示例#1
0
def eval_sheet(targets, count, smallest_hash, a_builder, alignment, children, automated_decision):
    first = False
    a_builder.write("\n{:<5}\t{:<20}{:12}{:20}{:23}{:23}".format(count, smallest_hash, "", "", automated_decision, ""))
    if targets is None:
        a_builder.write(Cls.disambiguate_network(alignment, children))
    else:
        response = Cls.disambiguate_network_2(children, targets, output=False)
        if response:
            temp = ""
            dataset = ""
            # for line in response:
            #     print line

            for i in range(1, len(response)):
                resource = Ut.get_uri_local_name(response[i][0])
                if i == 1:
                    temp = "{:25}: {}".format(resource, response[i][1])

                elif dataset == response[i][0]:
                    temp = "{:25} | {}".format(temp, response[i][1])

                else:
                    if first is False:
                        a_builder.write("  {}\n".format(temp))
                    else:
                        a_builder.write("{:108}{}\n".format("", temp))
                    first = True

                    temp = "{:25}: {}".format(resource, response[i][1])

                dataset = response[i][0]
            a_builder.write("{:108}{}\n".format("", temp))
示例#2
0
def test(count, smallest_hash, a_builder, alignment, children):
    first = False
    a_builder.write("\n{:<5}\t{:<20}{:12}{:20}{:20}".format(
        count, smallest_hash, "", "", ""))
    if targets is None:
        a_builder.write(Cls.disambiguate_network(alignment, children))
    else:
        response = Cls.disambiguate_network_2(children, targets, output=False)
        if response:
            temp = ""
            dataset = ""
            # for line in response:
            #     print line

            for i in range(1, len(response)):
                if i == 1:
                    temp = response[i][1]

                elif dataset == response[i][0]:
                    temp = "{} | {}".format(temp, response[i][1])

                else:
                    if first is False:
                        a_builder.write("{}\n".format(temp))
                    else:
                        a_builder.write("{:80}{}\n".format("", temp))
                    first = True
                    temp = response[i][1]

                dataset = response[i][0]
            a_builder.write("{:80}{}\n".format("", temp))
示例#3
0
def generate_eval_sheet(
    alignment,
    network_size,
    greater_equal=True,
    targets=None,
):
    # RUN THE CLUSTER
    count = 0
    tabs = "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
    a_builder = Buffer.StringIO()
    a_builder.write(
        "Count	ID					STRUCTURE	E-STRUCTURE-SIZE	NETWORK QUALITY		REFERENCE\n")
    clusters_0 = Cls.links_clustering(alignment, None)
    for i_cluster in clusters_0.items():
        children = i_cluster[1][St.children]
        check = len(children) >= network_size if greater_equal else len(
            children) == network_size
        first = False
        if check:
            count += 1

            # 2: FETCHING THE CORRESPONDENTS
            smallest_hash = float('inf')
            for child in children:
                hashed = hash(child)
                if hashed <= smallest_hash:
                    smallest_hash = hashed
            test(count, smallest_hash, a_builder, alignment, children)
            # # MAKE SURE THE FILE NAME OF THE CLUSTER IS ALWAYS THE SAME
            # smallest_hash = "{}".format(str(smallest_hash).replace("-", "N")) if str(
            #     smallest_hash).startswith("-") \
            #     else "P{}".format(smallest_hash)
            #
            # a_builder.write("\n{:5}\t{:20}{:12}{:20}{:20}".format(count, smallest_hash, "", "", ""))
            # if targets is None:
            #     a_builder.write(Cls.disambiguate_network(alignment, children))
            # else:
            #     response = Cls.disambiguate_network_2(children, targets, output=False)
            #     if response:
            #         temp = ""
            #         dataset = ""
            #         # for line in response:
            #         #     print line
            #
            #         for i in range(1, len(response)):
            #             if i == 1:
            #                 temp = response[i][1]
            #
            #             elif dataset == response[i][0]:
            #                 temp = "{} | {}".format(temp, response[i][1])
            #
            #
            #             else:
            #                 if first is False:
            #                     a_builder.write("{}\n".format(temp))
            #                 else:
            #                     a_builder.write( "{:80}{}\n".format("", temp))
            #                 first = True
            #                 temp = response[i][1]
            #
            #
            #             dataset = response[i][0]
            #         a_builder.write( "{:80}{}\n".format("", temp))

    print a_builder.getvalue()
示例#4
0
                    first = True
                    temp = response[i][1]

                dataset = response[i][0]
            a_builder.write("{:80}{}\n".format("", temp))


# generate_eval_sheet("http://risis.eu/lens/union_Grid_20170712_Eter_2014_Orgreg_20170718_P1310881121", network_size=3,
#                     greater_equal=False, targets=targets)
"""""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """
    COMPUTING AN ALIGNMENT STATISTICS
""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """"""
# OUTPUT FALSE RETURNS THE MATRIX WHILE OUTPUT TRUE RETURNS THE DISPLAY MATRIX IN A TABLE FORMAT
stats = Cls.resource_stat(alignment=linkset,
                          dataset=ds,
                          resource_type=org,
                          output=True,
                          activated=False)
# for stat in stats:
#     for key, value in stat.items():
#         print "{:21} : {}".format(key, value)

# Cls.disambiguate_network_2(["<http://www.grid.ac/institutes/grid.474119.e>",
#                             "<http://risis.eu/orgreg_20170718/resource/HR1016>",
#                             "<http://www.grid.ac/institutes/grid.4808.4>"], targets, output=True)
"""""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """
    PLOT THE LINK NETWORK
""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """"""
size = 7
ls_4 = "http://risis.eu/lens/union_Grid_20170712_Eter_2014_Orgreg_20170718_N1655042445"
ls_5 = "http://risis.eu/lens/union_Eter_2014_Orgreg_20170718_Grid_20170712_N2030153069"
示例#5
0
def cluster_d_test(linkset, network_size=3, network_size_max=3, targets=None, constraint_targets=None,
                   constraint_text="", directory=None, greater_equal=True, print_it=False, limit=None,
                   only_good=False, activated=False):

    # FOR CONSTRAINTS TO WORK, IT SHOULD NOT BE NONE

    network = []
    print "\nLINK NETWORK INVESTIGATION"
    if activated is False:
        print "\tTHE FUNCTION I NOT ACTIVATED"
        return ""

    elif network_size > network_size_max and greater_equal is False:
        print "\t[network_size] SHOULD BE SMALLER THAN [network_size_max]"
        return ""

    date = datetime.date.isoformat(datetime.date.today()).replace('-', '')
    linkset_name = Ut.get_uri_local_name(linkset)
    linkset = linkset.strip()

    if network_size_max - network_size == 0:
        greater_equal = False

    check = False

    # RUN THE CLUSTER
    clusters_0 = Cls.links_clustering(linkset, limit)

    if greater_equal is True:
        temp_size = 0
        for cluster, cluster_val in clusters_0.items():
            new_size = len(list(cluster_val["nodes"]))
            if new_size > temp_size:
                temp_size = new_size
        network_size_max = temp_size
        print "THE BIGGEST NETWORK'S: {}".format(network_size_max)

    def check_constraint():

        text = constraint_text.lower()
        text = text.split(",")

        # CONSTRAINT BUILDER
        c_builder = Buffer.StringIO()
        if constraint_targets is not None:
            for dictionary in constraint_targets:
                graph = dictionary[St.graph]
                data_list = dictionary[St.data]
                properties = data_list[0][St.properties]
                prop = properties[0] if Ut.is_nt_format(properties[0]) else "<{}>".format(properties[0])

                # WRITING THE CONSTRAINT ON THE GRAPH
                graph_q = """
       {{
           GRAPH <{0}>
           {{
               ?lookup {1} ?constraint .
           }}
       }}
       """.format(graph, prop)
                c_builder.write(graph_q) if len(c_builder.getvalue()) == 0  else \
                    c_builder.write("UNION {}".format(graph_q))

            # WRITING THE FILTER
            if len(c_builder.getvalue()) > 0:
                for i in range(0, len(text)):
                    if i == 0 :
                        c_builder.write("""
       FILTER (LCASE(STR(?constraint)) = "{}" """.format(text[i].strip()))
                    else:
                        c_builder.write("""
       || LCASE(STR(?constraint)) = "{}" """.format(text[i].strip()))
                c_builder.write(")")


        # # THE RESULT OF THE QUERY ABOUT THE LINKED RESOURCES
        query = Qry.cluster_rsc_strengths_query(resources, linkset)
        query = query.replace("# CONSTRAINTS IF ANY", c_builder.getvalue())
        # print query
        response = Qry.sparql_xml_to_matrix(query)
        if response[St.result] is None:
            return False
        return True

    for index in range(network_size, network_size_max + 1):

        count_1 = 0
        count_2 = 0
        curr_network_size = index
        print "\nCLUSTERS OF SIZE {}".format(index)
        sheet_builder = Buffer.StringIO()
        analysis_builder = Buffer.StringIO()
        sheet_builder.write("Count	ID					STRUCTURE	E-STRUCTURE-SIZE	A. NETWORK QUALITY"
                            "		M. NETWORK QUALITY		REFERENCE\n")

        for cluster, cluster_val in clusters_0.items():

            # network = []
            resources = ""
            uri_size = 0
            count_1 += 1
            children = list(cluster_val["nodes"])
            strengths = cluster_val["strengths"]
            cluster_size = len(children)
            # if "<http://www.grid.ac/institutes/grid.10493.3f>" not in children:
            #     continue

            check = cluster_size >= curr_network_size if greater_equal else cluster_size == curr_network_size

            # NETWORK OF A PARTICULAR SIZE
            if check:

                # file_name = i_cluster[0]

                # 2: FETCHING THE CORRESPONDENTS
                smallest_hash = float('inf')
                child_list = ""
                for child in children:

                    # CREATE THE HASHED ID AS THE CLUSTER NAME
                    hashed = hash(child)
                    if hashed <= smallest_hash:
                        smallest_hash = hashed

                    # GENERAL INFO 1: RESOURCES INVOLVED
                    child_list += "\t{}\n".format(child)

                    # LIST OF RESOURCES IN THE CLUTER
                    use = "<{}>".format(child) if Ut.is_nt_format(child) is not True else child
                    resources += "\n\t\t\t\t{}".format(use)
                    if len(child) > uri_size:
                        uri_size = len(child)

                # MAKE SURE THE FILE NAME OF THE CLUSTER IS ALWAYS THE SAME
                file_name = "{}".format(str(smallest_hash).replace("-", "N")) if str(
                    smallest_hash).startswith("-") \
                    else "P{}".format(smallest_hash)

                if constraint_targets is not None and check_constraint() is False:
                    continue

                count_2 += 1

                # # THE RESULT OF THE QUERY ABOUT THE LINKED RESOURCES
                query = Qry.cluster_rsc_strengths_query(resources, linkset)
                response = Qry.sparql_xml_to_matrix(query)

                # GENERAL INFO 2:
                info = "SIZE    {}   \nCLUSTER {} \nNAME    {}\n".format(cluster_size, count_1, file_name)
                info2 = "CLUSTER [{}] NAME [{}] SIZE [{}]".format(count_1, file_name, cluster_size)
                analysis_builder.write("{}\n".format(info))


                analysis_builder.write("RESOURCES INVOLVED\n")
                analysis_builder.write(child_list)
                analysis_builder.write("\nCORRESPONDENT FOUND ")
                analysis_builder.write(
                    Qry.display_matrix(response, spacing=uri_size, output=True, line_feed='.', is_activated=True))

                # INFO TYPE 3: PROPERTY-VALUES OF THE RESOURCES INVOLVED
                analysis_builder.write("\n\nDISAMBIGUATION HELPER ")
                if targets is None:
                    analysis_builder.write(Cls.disambiguate_network(linkset, children))
                else:
                    report = Cls.disambiguate_network_2(children, targets)
                    if report is not None:
                        analysis_builder.write(report)

                # GENERATING THE NETWORK AS A TUPLE WHERE A TUPLE REPRESENT TWO RESOURCES IN A RELATIONSHIP :-)
                network = []
                link_count = 0
                for link in cluster_val["links"]:
                    link_count += 1
                    name_1 = "{}-{}".format(Ut.hash_it(link[0]), Ut.get_uri_local_name(link[0]))
                    name_2 = "{}-{}".format(Ut.hash_it(link[1]), Ut.get_uri_local_name(link[1]))
                    network += [(name_1, name_2)]

                #  GET THE AUTOMATED FLAG


                if print_it:
                    print ""
                    print analysis_builder.getvalue()

                # SETTING THE DIRECTORY
                if directory:

                    if network:
                        automated_decision = metric(network)["AUTOMATED_DECISION"]
                        if only_good is True and automated_decision.startswith("GOOD") is not True:
                            count_2 -= 1
                            continue

                        print "{:>5} {}".format(count_2, info2)

                        eval_sheet(targets, count_2, "{}_{}".format(cluster_size, file_name),
                                   sheet_builder, linkset, children, automated_decision)
                    else:
                        print network


                    # linkset_name = Ut.get_uri_local_name(linkset)
                    # date = datetime.date.isoformat(datetime.date.today()).replace('-', '')
                    temp_directory = "{}{}".format(directory, "\{}_Analysis_{}\{}\{}_{}\\".format(
                        curr_network_size, date, linkset_name, cluster_size, file_name))
                    if not os.path.exists(temp_directory):
                        os.makedirs(temp_directory)

                    """""""""""""  PLOTTING """""""""""""
                    # FIRE THE DRAWING: Supported formats: eps, pdf, pgf, png, ps, raw, rgba, svg, svgz.
                    analysis_builder.write(
                        draw_graph(graph=network,
                                   file_path="{}{}.{}".format(temp_directory, "cluster_{}".format(file_name), "pdf"),
                                   show_image=False)
                    )

                    """""""""""""  WRITING TO DISC """""""""""""
                    # WRITE TO DISC
                    Ut.write_2_disc(file_directory=temp_directory, file_name="cluster_{}".format(file_name, ),
                                    data=analysis_builder.getvalue(), extension="txt")
                    analysis_builder = Buffer.StringIO()

            if directory:
                # if len(sheet_builder.getvalue()) > 150 and count_2 == 2:
                if len(sheet_builder.getvalue()) > 150 and len(clusters_0) == count_1:
                    tmp_directory = "{}{}".format(directory, "\{}_Analysis_{}\{}\\".format(
                        curr_network_size, date, linkset_name))

                    """""""""""""  WRITING CLUSTER SHEET TO DISC """""""""""""
                    print "\n\tWRITING CLUSTER SHEET AT\n\t{}".format(tmp_directory)
                    Ut.write_2_disc(file_directory=tmp_directory, file_name="{}_ClusterSheet".format(cluster_size),
                                    data=sheet_builder.getvalue(), extension="txt")

            # if count_2 == 2:
            #     break

        if greater_equal is True:
            # no need to continue as we already did all network greater of equal to "network-size" input
            break

        print "\t>>> FOUND: {} CLUSTERS OF SIZE {}".format(count_2, curr_network_size)

        if directory is None:
            return "{}\t{}".format(curr_network_size, count_2)
示例#6
0
def cluster_d_test_stats(linkset, network_size=3, targets=None,
                   directory=None, greater_equal=True, print_it=False, limit=None, activated=False):
    network = []
    print "LINK NETWORK INVESTIGATION"
    if activated is False:
        print "\tTHE FUNCTION I NOT ACTIVATED"
        return ""
    date = datetime.date.isoformat(datetime.date.today()).replace('-', '')
    linkset_name = Ut.get_uri_local_name(linkset)
    count_1 = 0
    count_2 = 0
    sheet_builder = Buffer.StringIO()
    analysis_builder = Buffer.StringIO()
    sheet_builder.write("Count	ID					STRUCTURE	E-STRUCTURE-SIZE	A. NETWORK QUALITY"
                        "		M. NETWORK QUALITY		REFERENCE\n")
    linkset = linkset.strip()
    check = False

    # RUN THE CLUSTER
    clusters_0 = Cls.links_clustering(linkset, limit)

    for cluster, cluster_val in clusters_0.items():

        # network = []
        resources = ""
        uri_size = 0
        count_1 += 1
        children = list(cluster_val["nodes"])
        strengths = cluster_val["strengths"]
        cluster_size = len(children)
        # if "<http://www.grid.ac/institutes/grid.10493.3f>" not in children:
        #     continue

        check = cluster_size >= network_size if greater_equal else cluster_size == network_size

        # NETWORK OF A PARTICULAR SIZE
        if check:
            count_2 += 1
            # file_name = i_cluster[0]

            # 2: FETCHING THE CORRESPONDENTS
            smallest_hash = float('inf')
            child_list = ""
            for child in children:
                hashed = hash(child)
                if hashed <= smallest_hash:
                    smallest_hash = hashed

                # GENERAL INFO 1: RESOURCES INVOLVED
                child_list += "\t{}\n".format(child)

                use = "<{}>".format(child) if Ut.is_nt_format(child) is not True else child
                resources += "\n\t\t\t\t{}".format(use)
                if len(child) > uri_size:
                    uri_size = len(child)

            if directory:
                # MAKE SURE THE FILE NAME OF THE CLUSTER IS ALWAYS THE SAME
                file_name = "{}".format(str(smallest_hash).replace("-", "N")) if str(
                    smallest_hash).startswith("-") \
                    else "P{}".format(smallest_hash)


                # # THE RESULT OF THE QUERY ABOUT THE LINKED RESOURCES
                query = Qry.cluster_rsc_strengths_query(resources, linkset)
                response = Qry.sparql_xml_to_matrix(query)

                # GENERAL INFO 2:
                info = "SIZE    {}   \nCLUSTER {} \nNAME    {}\n".format(cluster_size, count_1, file_name)
                info2 = "CLUSTER [{}] NAME [{}] SIZE [{}]".format(count_1, file_name, cluster_size)
                analysis_builder.write("{}\n".format(info))
                print "{:>5} {}".format(count_2, info2)

                analysis_builder.write("RESOURCES INVOLVED\n")
                analysis_builder.write(child_list)
                analysis_builder.write("\nCORRESPONDENT FOUND ")
                analysis_builder.write(
                    Qry.display_matrix(response, spacing=uri_size, output=True, line_feed='.', is_activated=True))

                # INFO TYPE 3: PROPERTY-VALUES OF THE RESOURCES INVOLVED
                analysis_builder.write("\n\nDISAMBIGUATION HELPER ")
                if targets is None:
                    analysis_builder.write(Cls.disambiguate_network(linkset, children))
                else:
                    analysis_builder.write(Cls.disambiguate_network_2(children, targets))


                # GENERATING THE NETWORK AS A TUPLE WHERE A TUPLE REPRESENT TWO RESOURCES IN A RELATIONSHIP :-)
                network = []
                link_count = 0
                for link in cluster_val["links"]:
                    link_count += 1
                    name_1 = "{}".format(Ut.get_uri_local_name(link[0]))
                    name_2 = "{}".format(Ut.get_uri_local_name(link[1]))
                    network += [(name_1, name_2)]


            if print_it:
                print ""
                print analysis_builder.getvalue()

            # SETTING THE DIRECTORY
            if directory:
                # linkset_name = Ut.get_uri_local_name(linkset)
                # date = datetime.date.isoformat(datetime.date.today()).replace('-', '')
                temp_directory = "{}{}".format(directory, "\{}_Analysis_{}\{}\{}_{}\\".format(
                    network_size, date, linkset_name, cluster_size, file_name))
                if not os.path.exists(temp_directory):
                    os.makedirs(temp_directory)

                """""""""""""  PLOTTING """""""""""""
                # FIRE THE DRAWING: Supported formats: eps, pdf, pgf, png, ps, raw, rgba, svg, svgz.
                analysis_builder.write(
                    draw_graph(graph=network,
                               file_path="{}{}.{}".format(temp_directory, "cluster_{}".format(file_name), "pdf"),
                               show_image=False)
                )

                """""""""""""  WRITING TO DISC """""""""""""
                # WRITE TO DISC
                Ut.write_2_disc(file_directory=temp_directory, file_name="cluster_{}".format(file_name, ),
                                data=analysis_builder.getvalue(), extension="txt")
                analysis_builder = Buffer.StringIO()

                if network:
                    automated_decision = metric(network)["AUTOMATED_DECISION"]
                    eval_sheet(targets, count_2, "{}_{}".format(cluster_size, file_name),
                               sheet_builder, linkset, children, automated_decision)
                else:
                    print network

        if directory:
            # if len(sheet_builder.getvalue()) > 150 and count_2 == 2:
            if len(sheet_builder.getvalue()) > 150 and len(clusters_0) == count_1:
                tmp_directory = "{}{}".format(directory, "\{}_Analysis_{}\{}\\".format(
                    network_size, date, linkset_name))

                """""""""""""  WRITING CLUSTER SHEET TO DISC """""""""""""
                print "\nWRITING CLUSTER SHEET AT\n\t{}".format(tmp_directory)
                Ut.write_2_disc(file_directory=tmp_directory, file_name="{}_ClusterSheet".format(cluster_size),
                                data=sheet_builder.getvalue(), extension="txt")

                # if count_2 == 2:
                #     break

    print ">>> FOUND: {}".format(count_2)

    if directory is None:
        return "{}\t{}".format(network_size, count_2)
示例#7
0
def cluster_d_test_statss(linkset, network_size=3, targets=None,
                   directory=None, greater_equal=True, print_it=False, limit=None, activated=False):
    network = []
    print "LINK NETWORK INVESTIGATION"
    if activated is False:
        print "\tTHE FUNCTION I NOT ACTIVATED"
        return ""
    date = datetime.date.isoformat(datetime.date.today()).replace('-', '')
    linkset_name = Ut.get_uri_local_name(linkset)
    count_1 = 0
    count_2 = 0
    sheet_builder = Buffer.StringIO()
    analysis_builder = Buffer.StringIO()
    sheet_builder.write("Count	ID					STRUCTURE	E-STRUCTURE-SIZE	A. NETWORK QUALITY"
                        "		M. NETWORK QUALITY		REFERENCE\n")
    linkset = linkset.strip()
    check = False

    # RUN THE CLUSTER
    clusters_0 = Cls.links_clustering(linkset, limit)

    for i_cluster in clusters_0.items():

        # network = []
        resources = ""
        uri_size = 0
        count_1 += 1
        children = i_cluster[1][St.children]
        cluster_size = len(children)
        # if "<http://www.grid.ac/institutes/grid.10493.3f>" not in children:
        #     continue

        check = cluster_size >= network_size if greater_equal else cluster_size == network_size

        # NETWORK OF A PARTICULAR SIZE
        if check:
            count_2 += 1
            # file_name = i_cluster[0]

            # 2: FETCHING THE CORRESPONDENTS
            smallest_hash = float('inf')
            child_list = ""
            for child in children:
                hashed = hash(child)
                if hashed <= smallest_hash:
                    smallest_hash = hashed

                # GENERAL INFO 1: RESOURCES INVOLVED
                child_list += "\t{}\n".format(child)

                use = "<{}>".format(child) if Ut.is_nt_format(child) is not True else child
                resources += "\n\t\t\t\t{}".format(use)
                if len(child) > uri_size:
                    uri_size = len(child)

            if directory:
                # MAKE SURE THE FILE NAME OF THE CLUSTER IS ALWAYS THE SAME
                file_name = "{}".format(str(smallest_hash).replace("-", "N")) if str(
                    smallest_hash).startswith("-") \
                    else "P{}".format(smallest_hash)

                # QUERY FOR FETCHING ALL LINKED RESOURCES FROM THE LINKSET
                query = """
                PREFIX prov: <{3}>
                PREFIX ll: <{4}>
                SELECT DISTINCT ?lookup ?object ?Strength ?Evidence
                {{
                    VALUES ?lookup{{ {0} }}

                    {{
                        GRAPH <{1}>
                        {{ ?lookup ?predicate ?object .}}
                    }} UNION
                    {{
                        GRAPH <{1}>
                        {{?object ?predicate ?lookup . }}
                    }}

                    GRAPH <{2}>
                    {{
                        ?predicate  prov:wasDerivedFrom  ?DerivedFrom  .
                        OPTIONAL {{ ?DerivedFrom  ll:hasStrength  ?Strength . }}
                        OPTIONAL {{ ?DerivedFrom  ll:hasEvidence  ?Evidence . }}
                    }}
                }}
                            """.format(resources, linkset, linkset.replace("lens", "singletons"),
                                       Ns.prov, Ns.alivocab)
                # print query

                # THE RESULT OF THE QUERY ABOUT THE LINKED RESOURCES
                response = Qry.sparql_xml_to_matrix(query)

                # A DICTIONARY OF KEY: (SUBJECT-OBJECT) VALUE:STRENGTH
                response_dic = dict()
                result = response[St.result]
                if result:
                    for i in range(1, len(result)):
                        key = (result[i][0], result[i][1])
                        if key not in response_dic:
                            response_dic[key] = result[i][2]

                # print response_dic

                # GENERAL INFO 2:
                info = "SIZE    {}   \nCLUSTER {} \nNAME    {}\n".format(cluster_size, count_1, file_name)
                info2 = "CLUSTER [{}] NAME [{}] SIZE [{}]".format(count_1, file_name, cluster_size)
                analysis_builder.write("{}\n".format(info))
                print "{:>5} {}".format(count_2, info2)

                analysis_builder.write("RESOURCES INVOLVED\n")
                analysis_builder.write(child_list)
                analysis_builder.write("\nCORRESPONDENT FOUND ")
                analysis_builder.write(
                    Qry.display_matrix(response, spacing=uri_size, output=True, line_feed='.', is_activated=True))

                # INFO TYPE 3: PROPERTY-VALUES OF THE RESOURCES INVOLVED
                analysis_builder.write("\n\nDISAMBIGUATION HELPER ")
                if targets is None:
                    analysis_builder.write(Cls.disambiguate_network(linkset, children))
                else:
                    analysis_builder.write(Cls.disambiguate_network_2(children, targets))

                position = i_cluster[1][St.row]
                if St.annotate in i_cluster[1]:
                    analysis_builder.write("\n\nANNOTATED CLUSTER PROCESS")
                    analysis_builder.write(i_cluster[1][St.annotate])

                # THE CLUSTER
                # print "POSITION: {}".format(position)
                # print "\nMATRIX DISPLAY\n"
                # for i in range(0, position):
                #     resource = (i_cluster[1][St.matrix])[i]
                #     print "\t{}".format(resource[:position])
                    # print "\t{}".format(resource)

                # GENERATING THE NETWORK AS A TUPLE WHERE A TUPLE REPRESENT TWO RESOURCES IN A RELATIONSHIP :-)
                network = []
                for i in range(1, position):
                    for j in range(1, position):
                        if (i, j) in (i_cluster[1][St.matrix_d]) and (i_cluster[1][St.matrix_d])[(i, j)] != 0:
                            r = (i_cluster[1][St.matrix_d])[(i, 0)]
                            c = (i_cluster[1][St.matrix_d])[(0, j)]
                            r_name = "{}:{}".format(i, Ut.get_uri_local_name(r))
                            c_name = "{}:{}".format(j, Ut.get_uri_local_name(c))
                            network += [(r_name, c_name)]
                            # network += [(r_smart, c_smart)]
                # print "\tNETWORK", network

            if print_it:
                print ""
                print analysis_builder.getvalue()

            # SETTING THE DIRECTORY
            if directory:
                # linkset_name = Ut.get_uri_local_name(linkset)
                # date = datetime.date.isoformat(datetime.date.today()).replace('-', '')
                temp_directory = "{}{}".format(directory, "\{}_Analysis_{}\{}\{}_{}\\".format(
                    network_size, date, linkset_name, cluster_size, file_name))
                if not os.path.exists(temp_directory):
                    os.makedirs(temp_directory)

                """""""""""""  PLOTTING """""""""""""
                # FIRE THE DRAWING: Supported formats: eps, pdf, pgf, png, ps, raw, rgba, svg, svgz.
                analysis_builder.write(
                    draw_graph(graph=network,
                               file_path="{}{}.{}".format(temp_directory, "cluster_{}".format(file_name), "pdf"),
                               show_image=False)
                )

                """""""""""""  WRITING TO DISC """""""""""""
                # WRITE TO DISC
                Ut.write_2_disc(file_directory=temp_directory, file_name="cluster_{}".format(file_name, ),
                                data=analysis_builder.getvalue(), extension="txt")
                analysis_builder = Buffer.StringIO()

        if directory:

            if network:
                automated_decision = metric(network)["AUTOMATED_DECISION"]
                eval_sheet(targets, count_2, "{}_{}".format(cluster_size, file_name),
                           sheet_builder, linkset, children, automated_decision)
            else:
                print network

        if directory:
            # if len(sheet_builder.getvalue()) > 150 and count_2 == 2:
            if len(sheet_builder.getvalue()) > 150 and len(clusters_0) == count_1:
                tmp_directory = "{}{}".format(directory, "\{}_Analysis_{}\{}\\".format(
                    network_size, date, linkset_name))

                """""""""""""  WRITING CLUSTER SHEET TO DISC """""""""""""
                print "\nWRITING CLUSTER SHEET AT\n\t{}".format(tmp_directory)
                Ut.write_2_disc(file_directory=tmp_directory, file_name="{}_ClusterSheet".format(cluster_size),
                                data=sheet_builder.getvalue(), extension="txt")

        # if count_2 == 2:
        #     break

    print ">>> FOUND: {}".format(count_2)

    if directory is None:
        return "{}\t{}".format(network_size, count_2)