示例#1
0
    start_month = last_date.month + 1
else:
    start_year = last_date.year - year_delta + 1
    start_month = 1

# 基础设定
history_data = History_Data[asset_list][
    str(start_year) + '-' + str(start_month): last_date]
predict_data = Predict_Data[asset_list][
    str(start_year) + '-' + str(start_month): last_date]

#cov_mat = history_data[asset_list].cov() * 12.0
cov_mat = pd.ewmcov(history_data, alpha=0.2).iloc[-3:] * 12.0
# print cov_mat
omega = np.matrix(cov_mat.values)
mkt_wgt = Risk_Parity_Weight(cov_mat)
print mkt_wgt
P = np.diag([1] * len(mkt_wgt))

conf_list = list()
for each in asset_list:
    conf_temp = ((history_data[each][str(start_year) + '-' + str(start_month):] -
                  predict_data[each][str(start_year) + '-' + str(start_month):])**2).mean() * 12.0
    conf_list.append(conf_temp)
conf_mat = np.matrix(np.diag(conf_list))

Q = np.matrix(Predict_Data[asset_list].loc[next_date])


com_ret, com_cov_mat = Combined_Return_Distribution(
    2, cov_mat, tau, mkt_wgt, P, Q, conf_mat)
示例#2
0
文件: MS.py 项目: wangbin750/FOF
def Ms_RP(return_frame, switch_map):
    temp_columns = list(return_frame.columns)

    temp_Ms_list = []
    for each in temp_columns:
        if switch_map[each]:
            temp_std, temp_Coef, temp_transMat, temp_prob_smo = Ms_R(
                list(return_frame[each]))
        else:
            temp_std = np.array([np.std(list(return_frame[each]))] * 2)
            temp_Coef = np.array([np.mean(list(return_frame[each]))] * 2)
            temp_transMat = np.array([[1, 0], [0, 1]]).reshape(2, 2)
            temp_prob_smo = np.array([[0.5] * len(return_frame[each]),
                                      [0.5] * len(return_frame[each])]).T
        temp_Ms_list.append(
            [temp_std, temp_Coef, temp_transMat, temp_prob_smo])
    Ms_frame = pd.DataFrame(temp_Ms_list,
                            index=temp_columns,
                            columns=['std', 'Coef', 'transMat', 'prob_smo']).T

    temp_cov_list = []
    for each_i in temp_columns:
        for each_j in temp_columns[temp_columns.index(each_i) + 1:]:
            temp_cov_mat = Cross_Cov(return_frame[each_i],
                                     return_frame[each_j],
                                     Ms_frame[each_i]['Coef'],
                                     Ms_frame[each_j]['Coef'],
                                     Ms_frame[each_i]['prob_smo'],
                                     Ms_frame[each_j]['prob_smo'])
            temp_cov_list.append(temp_cov_mat)

    Tree = Tree_Gen(len(temp_columns))
    rp_wgt_list = []
    for each_leaf in Tree:
        cov_mat_list = []
        for i in range(len(temp_columns)):
            for j in range(len(temp_columns)):
                if i == j:
                    cov_mat_list.append((Ms_frame[temp_columns[i]]['std'][int(
                        each_leaf[i])])**2)
                else:
                    if i < j:
                        location = len(temp_columns) * (i + 1) - sum(
                            range(i + 2)) - (len(temp_columns) - j)
                        cov_mat_list.append(
                            temp_cov_list[location][int(each_leaf[i]),
                                                    int(each_leaf[j])])
                    else:
                        location = len(temp_columns) * (j + 1) - sum(
                            range(j + 2)) - (len(temp_columns) - i)
                        cov_mat_list.append(
                            temp_cov_list[location][int(each_leaf[j]),
                                                    int(each_leaf[i])])
        cov_mat = np.array(cov_mat_list).reshape(len(temp_columns),
                                                 len(temp_columns))
        cov_mat = pd.DataFrame(cov_mat,
                               columns=temp_columns,
                               index=temp_columns)
        rp_wgt = Risk_Parity_Weight(cov_mat)
        rp_wgt_list.append(rp_wgt)

    prob_list = []
    for each_leaf in Tree:
        prob_leaf = 1
        for i in range(len(temp_columns)):
            stat = int(each_leaf[i])
            trans_mat = Ms_frame[temp_columns[i]]['transMat']
            temp_prob = Ms_frame[temp_columns[i]]['prob_smo'][
                -1, 0] * trans_mat[0, stat] + Ms_frame[
                    temp_columns[i]]['prob_smo'][-1, 1] * trans_mat[1, stat]
            prob_leaf = prob_leaf * temp_prob
        prob_list.append(prob_leaf)
    '''
    filt_prob_list = []
    for each_prob in prob_list:
        if each_prob == max(prob_list):
            filt_prob_list.append(1.0)
        else:
            filt_prob_list.append(0.0)
    prob_list = filt_prob_list
    '''
    prob_wgt_list = []
    for i in range(len(Tree)):
        prob_wgt_list.append(rp_wgt_list[i] * prob_list[i])

    return sum(prob_wgt_list)
示例#3
0
文件: MS.py 项目: wangbin750/FOF
    rp_wgt = Ms_RP(data_frame, {'SP500':True, 'Barclays_US_bond':False})
    '''

    multi_wgt = Ms_Multi(data_frame, {
        'SP500': True,
        'London_gold': True,
        'Barclays_US_bond': False
    }, 2)
    mu_wgt = multi_wgt["mu_wgt"]
    rp_wgt = multi_wgt["rp_wgt"]
    print mu_wgt
    print rp_wgt

    #data_frame = data[data.index[each-120]:data.index[each]]
    rp_wgt_bm = Risk_Parity_Weight(data_frame.cov()).round(3)
    mu_wgt_bm = Max_Utility_Weight_new(pd.DataFrame(data_frame.mean()),
                                       data_frame.cov(), 2,
                                       [(0.0, None)] * 3).round(3)
    '''
    mu_wgt = Ms_MU(data_frame, {'SP500':True, 'London_gold':True, 'Barclays_US_bond':False})
    rp_wgt = Ms_RP(data_frame, {'SP500':True, 'London_gold':True, 'Barclays_US_bond':False})
    #data_frame = data[data.index[each-120]:data.index[each]]
    rp_wgt_bm = Risk_Parity_Weight(data_frame.cov())
    mu_wgt_bm = Max_Utility_Weight_new(pd.DataFrame(data_frame.mean()), data_frame.cov(), 2, [(0.0,None)]*3)
    '''

    mu_ms_return = np.sum(mu_wgt * data.loc[data.index[each + 1]])
    mu_bm_return = np.sum(mu_wgt_bm * data.loc[data.index[each + 1]])
    rp_ms_return = np.sum(rp_wgt * data.loc[data.index[each + 1]])
    rp_bm_return = np.sum(rp_wgt_bm * data.loc[data.index[each + 1]])
示例#4
0
文件: MS_3.py 项目: wangbin750/FOF
def Ms_Multi(return_frame, switch_map, lam):
    temp_columns = list(return_frame.columns)

    temp_Ms_list = []
    for each in temp_columns:
        if switch_map[each] != 1:
            temp_std, temp_Coef, temp_transMat, temp_prob_smo = Ms_R(
                list(return_frame[each]), switch_map[each])
            #print temp_Coef
            #print temp_std
        else:
            temp_std = np.array([np.std(list(return_frame[each]))] * 2)
            temp_Coef = np.array([np.mean(list(return_frame[each]))] * 2)
            temp_transMat = np.array([[1, 0], [0, 1]]).reshape(2, 2)
            temp_prob_smo = np.array([[0.5] * len(return_frame[each]),
                                      [0.5] * len(return_frame[each])]).T
        temp_Ms_list.append(
            [temp_std, temp_Coef, temp_transMat, temp_prob_smo])
    Ms_frame = pd.DataFrame(temp_Ms_list,
                            index=temp_columns,
                            columns=['std', 'Coef', 'transMat', 'prob_smo']).T

    temp_cov_list = []
    for each_i in temp_columns:
        for each_j in temp_columns[temp_columns.index(each_i) + 1:]:
            temp_cov_mat = Cross_Cov(return_frame[each_i],
                                     return_frame[each_j],
                                     Ms_frame[each_i]['Coef'],
                                     Ms_frame[each_j]['Coef'],
                                     Ms_frame[each_i]['prob_smo'],
                                     Ms_frame[each_j]['prob_smo'])
            temp_cov_list.append(temp_cov_mat)
    #print temp_cov_list

    Tree = Tree_Gen(switch_map, temp_columns)
    rp_wgt_list = []
    mu_wgt_list = []
    for each_leaf in Tree:
        cov_mat_temp = []
        exp_ret_temp = []
        for i in range(len(temp_columns)):
            for j in range(len(temp_columns)):
                if i == j:
                    cov_mat_temp.append((Ms_frame[temp_columns[i]]['std'][int(
                        each_leaf[i])])**2)
                    exp_ret_temp.append(Ms_frame[temp_columns[i]]['Coef'][int(
                        each_leaf[i])])
                else:
                    if i < j:
                        location = len(temp_columns) * (i + 1) - sum(
                            range(i + 2)) - (len(temp_columns) - j)
                        cov_mat_temp.append(
                            temp_cov_list[location][int(each_leaf[i]),
                                                    int(each_leaf[j])])
                    else:
                        location = len(temp_columns) * (j + 1) - sum(
                            range(j + 2)) - (len(temp_columns) - i)
                        cov_mat_temp.append(
                            temp_cov_list[location][int(each_leaf[j]),
                                                    int(each_leaf[i])])
        exp_ret = pd.DataFrame(exp_ret_temp, index=temp_columns)
        cov_mat = np.array(cov_mat_temp).reshape(len(temp_columns),
                                                 len(temp_columns))
        cov_mat = pd.DataFrame(cov_mat,
                               columns=temp_columns,
                               index=temp_columns)
        rp_wgt = Risk_Parity_Weight(cov_mat)
        mu_wgt = Max_Utility_Weight(exp_ret, cov_mat, lam,
                                    [(0.0, None)] * len(temp_columns))
        #print mu_wgt
        #print "----"
        rp_wgt_list.append(rp_wgt)
        mu_wgt_list.append(mu_wgt)

    prob_list = []
    for each_leaf in Tree:
        prob_leaf = 1
        for i in range(len(temp_columns)):
            stat = int(each_leaf[i])
            trans_mat = Ms_frame[temp_columns[i]]['transMat']
            temp_prob = sum(Ms_frame[temp_columns[i]]['prob_smo'][-1, :] *
                            trans_mat[:, stat])
            #temp_prob = Ms_frame[temp_columns[i]]['prob_smo'][-1,0]*trans_mat[0,stat] + Ms_frame[temp_columns[i]]['prob_smo'][-1,1]*trans_mat[1,stat]
            prob_leaf = prob_leaf * temp_prob
        prob_list.append(prob_leaf)
        #print prob_list
    '''
    filt_prob_list = []
    for each_prob in prob_list:
        if each_prob == max(prob_list):
            filt_prob_list.append(1.0)
        else:
            filt_prob_list.append(0.0)
    prob_list = filt_prob_list
    '''
    prob_rp_wgt_list = []
    prob_mu_wgt_list = []
    prob_rp_list = []
    prob_mu_list = []

    for i in range(len(Tree)):
        if any(np.isnan(rp_wgt_list[i])):
            pass
        else:
            prob_rp_wgt_list.append(rp_wgt_list[i] * prob_list[i])
            prob_rp_list.append(prob_list[i])
        if any(np.isnan(mu_wgt_list[i])):
            pass
        else:
            prob_mu_wgt_list.append(mu_wgt_list[i] * prob_list[i])
            prob_mu_list.append(prob_list[i])

    #print np.sum(prob_mu_wgt_list)

    return {
        "rp_wgt": (sum(prob_rp_wgt_list) / sum(prob_rp_list)).round(3),
        "mu_wgt": (sum(prob_mu_wgt_list) / sum(prob_mu_list)).round(3)
    }
示例#5
0
def Backtest_CPPI_BL_step(History_Data, Predict_Data, History_Data_D,
                          asset_list, risk_list, bnds, asset_level_1,
                          asset_level_2, year_delta, portfolio_name,
                          money_weight, up_per, target_ret, multiplier,
                          max_risk_weight):

    tau = 1.0
    if portfolio_name == "wenjian":
        lam = 2.3  #进取-1.9 平衡-2.0 稳健-2.3
    elif portfolio_name == "pingheng":
        lam = 1.9
    elif portfolio_name == "jinqu":
        lam = 1.7
    else:
        raise Exception("Wrong portfolio_name!")

    pct_list = []
    weight_list = []
    date_list = []
    asset_drawdown = pd.Series([0.0] * len(asset_list), index=asset_list)
    asset_position = pd.Series([1.0] * len(asset_list), index=asset_list)
    for each_date in Predict_Data.index[60:-1]:
        last_date = History_Data.index[list(
            Predict_Data.index).index(each_date) - 1]  # 当前月份日期
        next_date = each_date  # 下一月份日期
        if last_date.month <= 11:
            start_year = last_date.year - year_delta
            start_month = last_date.month + 1
        else:
            start_year = last_date.year - year_delta + 1
            start_month = 1

        # 基础设定
        history_data = History_Data[str(start_year) + '-' +
                                    str(start_month):last_date]
        history_data_d = History_Data_D[str(start_year) + '-' +
                                        str(start_month):last_date]
        predict_data = Predict_Data[str(start_year) + '-' +
                                    str(start_month):last_date]
        cov_mat = history_data_d[risk_list].cov() * (len(history_data_d) /
                                                     year_delta)
        #cov_mat = history_data[asset_list].cov() * 12.0
        #for each_asset in risk_list:
        for each_asset in risk_list:
            temp_drawdown = (asset_drawdown[each_asset] +
                             1.0) * (history_data[each_asset][-1] + 1.0) - 1
            if temp_drawdown >= 0:
                temp_drawdown = 0
            else:
                pass
            asset_drawdown[each_asset] = temp_drawdown
        # print cov_mat
        omega = np.matrix(cov_mat.values)
        mkt_wgt = Risk_Parity_Weight(cov_mat)
        #print mkt_wgt

        P = np.diag([1] * len(mkt_wgt))

        conf_list = list()
        for each in risk_list:
            conf_temp = ((
                history_data[each][str(start_year) + '-' + str(start_month):] -
                predict_data[each][str(start_year) + '-' + str(start_month):])
                         **2).mean() * 12.0
            conf_list.append(conf_temp)
        conf_mat = np.matrix(np.diag(conf_list))

        Q = np.matrix(Predict_Data[risk_list].loc[next_date])

        com_ret, com_cov_mat = Combined_Return_Distribution(
            2, cov_mat, tau, mkt_wgt, P, Q, conf_mat)

        #print com_ret

        weight_bl = Max_Utility_Weight(com_ret, com_cov_mat, lam, bnds)
        #print weight_bl

        rf_ret = history_data[list(set(asset_list) -
                                   set(risk_list))[0]].mean() * 12

        if len(pct_list) == 0:
            current_nv = 1
            nv_threshold = 1
        else:
            current_nv = (np.array(pct_list) + 1).prod()
        #print "current_nv"
        #print current_nv
        if current_nv > (1 + up_per) * nv_threshold:
            nv_threshold = (1 + up_per) * nv_threshold
        else:
            pass

        cushion_per = Cushion_Cal(nv=current_nv,
                                  nv_threshold=nv_threshold,
                                  rf_ret=rf_ret,
                                  target_ret=target_ret)

        #print "cushion"
        #print cushion_per

        para_m = 0.01 / (-VaR_Cal(0.99, [0] * len(risk_list),
                                  history_data[risk_list].cov() * 12.0, 1 / 12,
                                  weight_bl[risk_list]))

        #print "para_m"
        #print para_m
        #print "--------------"

        risk_weight = min(cushion_per * multiplier, max_risk_weight)

        weight_risk = weight_bl[risk_list] * risk_weight
        #weight_risk = weight_bl[risk_list]
        #print weight_risk
        weight_bl[risk_list] = weight_risk
        #weight_bl[risk_list] = [0.0]*len(risk_list)
        weight_bl[list(set(asset_list) -
                       set(risk_list))[0]] = money_weight - sum(
                           weight_bl[risk_list])
        #weight_bl[list(set(asset_list)-set(risk_list))[0]] = 0.0

        for each_asset in asset_list:
            if asset_position[each_asset] == 1:
                if (asset_drawdown[each_asset] <= asset_level_1[each_asset]
                    ) and (asset_drawdown[each_asset] >
                           asset_level_2[each_asset]):
                    asset_position[each_asset] = 0.5
                elif asset_drawdown[each_asset] <= asset_level_2[each_asset]:
                    asset_position[each_asset] = 0.0
                else:
                    pass
            elif asset_position[each_asset] == 0.5:
                if asset_position[each_asset] <= asset_level_2[each_asset]:
                    asset_position[each_asset] = 0.0
                elif (predict_data[each_asset][-1] >
                      0) and (history_data[each_asset][-1] > 0):
                    asset_position[each_asset] = 1.0
                    asset_drawdown[each_asset] = 0.0
                else:
                    pass
            elif asset_position[each_asset] == 0.0:
                if (predict_data[each_asset][-1] >
                        0) and (history_data[each_asset][-1] > 0):
                    asset_position[each_asset] = 0.5
                    asset_drawdown[each_asset] = 0.0
                else:
                    pass

        weight_bl = (weight_bl * asset_position).round(2)
        #print weight_bl
        #print next_date
        #print sum(weight_bl)
        port_ret = sum(weight_bl * History_Data[asset_list].loc[next_date]) + (
            1.0 - sum(weight_bl)) * History_Data["money"].loc[next_date]

        #print sum(weight_bl*History_Data[asset_list].loc[next_date])*money_weight + money_weight*History_Data["money"].loc[next_date]
        pct_list.append(port_ret)
        weight_list.append(list(weight_bl))
        date_list.append(next_date)

    #pd.Series(np.array(pct_list), index=date_list).to_csv("/Users/WangBin-Mac/FOF/Asset Allocation/backtest_%s.csv"%portfolio_name)
    #pd.DataFrame(np.array(weight_list), index=date_list, columns=asset_list).to_excel("/Users/WangBin-Mac/FOF/Asset Allocation/backtest_%s_weight.xlsx"%portfolio_name)
    return pd.Series(np.array(pct_list), index=date_list)
示例#6
0
                    rho_matrix_dcc[i][j] = temp_rho

        cov_matrix_garch_dcc = np.matrix(
            np.diag(std_list_garch)) * np.matrix(rho_matrix_dcc) * np.matrix(
                np.diag(std_list_garch))
        cov_matrix_garch = np.matrix(np.diag(std_list_garch)) * np.matrix(
            return_frame.corr()) * np.matrix(np.diag(std_list_garch))

        cov_matrix_all_garch_dcc = return_frame_all.cov()
        cov_matrix_all_garch_dcc.loc[asset_col,
                                     asset_col] = cov_matrix_garch_dcc

        cov_matrix_all_garch = return_frame_all.cov()
        cov_matrix_all_garch.loc[asset_col, asset_col] = cov_matrix_garch

        rw = Risk_Parity_Weight(return_frame_all.cov()).round(3)
        rw_gd = Risk_Parity_Weight(cov_matrix_all_garch_dcc).round(3)
        rw_g = Risk_Parity_Weight(cov_matrix_all_garch).round(3)
        '''
        rw = Max_Utility_Weight_new(pd.DataFrame(return_frame_all.mean()), return_frame_all.cov(), 5, [(0.0,None)]*len(asset_col_all)).round(3)
        rw_gd = Max_Utility_Weight_new(pd.DataFrame(return_frame_all.mean()), cov_matrix_all_garch_dcc, 5, [(0.0,None)]*len(asset_col_all)).round(3)
        rw_g = Max_Utility_Weight_new(pd.DataFrame(return_frame_all.mean()), cov_matrix_all_garch, 5, [(0.0,None)]*len(asset_col_all)).round(3)
        '''
        mw = Max_Utility_Weight_new(pd.DataFrame(return_frame_all.mean()),
                                    return_frame_all.cov(), 2, [(0.0, None)] *
                                    len(asset_col_all)).round(3)
        mw_gd = Max_Utility_Weight_new(
            pd.DataFrame(return_frame_all.mean()), cov_matrix_all_garch_dcc, 2,
            [(0.0, None)] * len(asset_col_all)).round(3)
        mw_g = Max_Utility_Weight_new(pd.DataFrame(return_frame_all.mean()),
                                      cov_matrix_all_garch, 2, [(0.0, None)] *