def Entropy_analysis(parallel_inputs): t0 = time.time() # Unpack the parallel input x = parallel_inputs['x'] # Input EEG segment r = parallel_inputs['r'] # Tolerance value emb_dim = parallel_inputs['emb_dim'] # Embedding dimension ### Perform entropy analysis ApEn = measures.ApEn(x, emb_dim, r) # Sample Entropy SampEn = measures.SampEn(x, emb_dim, r) # RangeEn-A (Modified Approximate Entropy) RangeEn_A = measures.RangeEn_A(x, emb_dim, r) # RangeEn-B (Modified Sample Entropy) RangeEn_B = measures.RangeEn_B(x, emb_dim, r) print('Entropy analysis of the EEG segment was finished! Elapsed time: ' + str(time.time() - t0)) return ApEn, SampEn, RangeEn_A, RangeEn_B
ApEn_r[2, n_r] = measures.ApEn(x3 / np.std(x3), m_single, r_span[0, n_r]) # Sample Entropy SampEn_r[0, n_r] = measures.SampEn(x1, m_single, r_span[0, n_r]) SampEn_r[1, n_r] = measures.SampEn(x2, m_single, r_span[0, n_r]) SampEn_r[2, n_r] = measures.SampEn(x3 / np.std(x3), m_single, r_span[0, n_r]) # RangeEn-A (Modified Approximate Entropy) RangeEn_A_r[0, n_r] = measures.RangeEn_A(x1, m_single, r_span[0, n_r]) RangeEn_A_r[1, n_r] = measures.RangeEn_A(x2, m_single, r_span[0, n_r]) RangeEn_A_r[2, n_r] = measures.RangeEn_A(x3, m_single, r_span[0, n_r]) # RangeEn-B (Modified Sample Entropy) RangeEn_B_r[0, n_r] = measures.RangeEn_B(x1, m_single, r_span[0, n_r]) RangeEn_B_r[1, n_r] = measures.RangeEn_B(x2, m_single, r_span[0, n_r]) RangeEn_B_r[2, n_r] = measures.RangeEn_B(x3, m_single, r_span[0, n_r]) ##### Save the entropy values in an external .npz file np.savez(output_filename, SampEn_r=SampEn_r, ApEn_r=ApEn_r, RangeEn_B_r=RangeEn_B_r, RangeEn_A_r=RangeEn_A_r) print('r = ' + str(r_span[0, n_r]) + ', elapsed time = ' + str(time.time() - t0)) else: ##### Load the existing output .npz file
x, y, z = sim_data.Roessler_osc(N_single, t1=0, t2=50) # Approximate Entropy ApEn_r[n_surr, n_r] = measures.ApEn(x, m_single, r_span[0, n_r]) # Sample Entropy SampEn_r[n_surr, n_r] = measures.SampEn(x, m_single, r_span[0, n_r]) # RangeEn-A (Modified Approximate Entropy) RangeEn_A_r[n_surr, n_r] = measures.RangeEn_A(x, m_single, r_span[0, n_r]) # RangeEn-B (Modified Sample Entropy) RangeEn_B_r[n_surr, n_r] = measures.RangeEn_B(x, m_single, r_span[0, n_r]) ##### Save the entropy values in an external .npz file np.savez(output_filename, SampEn_r=SampEn_r, ApEn_r=ApEn_r, RangeEn_B_r=RangeEn_B_r, RangeEn_A_r=RangeEn_A_r) print('Tolerance ' + str(r_span[0, n_r]) + ', elapsed time = ' + str(time.time() - t0)) print('Entire elapsed time = ' + str(time.time() - t00)) else: ##### Load the existing output .npz file
elif (sig_type == 'pink_noise'): x = sim_data.Pink_noise(N_span[0, n_N]) elif (sig_type == 'brown_noise'): x = sim_data.fBm(int(N_span[0, n_N]), 0.5) # Approximate Entropy ApEn_N[n_surr, n_N] = measures.ApEn(x, m_single, r_single) # Sample Entropy SampEn_N[n_surr, n_N] = measures.SampEn(x, m_single, r_single) # RangeEn-A (Modified Approximate Entropy) RangeEn_A_N[n_surr, n_N] = measures.RangeEn_A(x, m_single, r_single) # RangeEn-B (Modified Sample Entropy) RangeEn_B_N[n_surr, n_N] = measures.RangeEn_B(x, m_single, r_single) ##### Save the entropy values in an external .npz file np.savez(output_filename, SampEn_N=SampEn_N, ApEn_N=ApEn_N, RangeEn_B_N=RangeEn_B_N, RangeEn_A_N=RangeEn_A_N) print('Length ' + str(N_span[0, n_N]) + ', elapsed time = ' + str(time.time()-t0)) print('Entire elapsed time = ' + str(time.time() - t00)) else: ##### Load the existing output .npz file out = np.load(output_filename) ApEn_N = out['ApEn_N'] SampEn_N = out['SampEn_N'] RangeEn_A_N = out['RangeEn_A_N'] RangeEn_B_N = out['RangeEn_B_N']