示例#1
0
def test_training():
    opt = Options().parse(['--workdir=./__test_tmp__/'])
    opt.model = 'a_net_tensorflow'
    opt.fineSize = 256
    opt.batchSize = 1
    opt.dim_ordering = 'channels_last'
    opt.display_freq = 500
    opt.use_resize_conv = True
    opt.norm_A = 'mean_std'
    opt.norm_B = 'min_max[0,1]'
    opt.lambda_A = 50
    opt.input_nc = 2
    opt.lr_nc = 1
    opt.lr_scale = 1.0 / 4.0
    opt.lambda_LR = 0
    opt.control_nc = 1
    opt.add_data_type_control = True
    opt.add_lr_channel = 'pseudo'
    # reduce the anet size
    opt.ngf = 1
    opt.ndf = 1
    # opt.continue_train = True

    # start training
    sources = create_data_sources(['TransformedTubulin001NB'], opt)
    d = sources['train']
    model = create_model(opt)
    model.train(d, verbose=1, max_steps=1)

    # training done
    opt.phase = 'test'
    model = create_model(opt)
    sources = create_data_sources(['TransformedTubulin001NB'], opt)
    d = sources['test']
    model.predict(d, verbose=1, max_steps=1)
示例#2
0
opt.model = 'a_net_tensorflow'
opt.fineSize = 512
opt.batchSize = 1
opt.dim_ordering = 'channels_last'
opt.display_freq = 500
opt.use_resize_conv = True
opt.norm_A = 'mean_std'
opt.norm_B = 'min_max[0,1]'
opt.lambda_A = 50
opt.input_nc = 2
opt.lr_nc = 1
opt.lr_scale = 1.0 / 4.0
opt.lambda_LR = 0
opt.control_nc = 1
opt.add_data_type_control = True
opt.add_lr_channel = 'pseudo'
# opt.continue_train = True

# start training
sources = create_data_sources(['TransformedTubulin001NB'], opt)
d = sources['train']
model = create_model(opt)
model.train(d, verbose=1, max_epoch=1000)

# training done
opt.phase = 'test'
model = create_model(opt)
sources = create_data_sources(['TransformedTubulin001NB'], opt)
d = sources['test']
model.predict(d, verbose=1)