def test_10(self):
        '''Creates a fake data-set with points labeled 'yes' around origin and points labeled 'no' outside'''
        arrs = []
        labels = []
        '''Points about the origin (located in a box of length 16 centered at origin)'''
        for i in range(0, 10):
            arr = [
                random.randint(0, 8) * np.sign(random.random() - 0.5)
                for x in range(0, 2)
            ]
            label = 'yes'
            arrs.append(arr)
            labels.append(label)
        '''Points outside the box'''
        for i in range(0, 10):
            arr = [
                random.randint(10, 20) * np.sign(random.random() - 0.5)
                for x in range(0, 2)
            ]
            label = 'no'
            arrs.append(arr)
            labels.append(label)
        '''Add some noise'''
        for i in range(0, 2):
            arr = [
                random.randint(0, 8) * np.sign(random.random() - 0.5)
                for x in range(0, 2)
            ]
            label = 'no'  # Note: this is artificially misclassified
            arrs.append(arr)
            labels.append(label)
        for i in range(0, 10):
            arr = [
                random.randint(10, 20) * np.sign(random.random() - 0.5)
                for x in range(0, 2)
            ]
            label = 'yes'  # Note: this is artificially misclassified
            arrs.append(arr)
            labels.append(label)

        ann = Ann(arrs, labels, n_h=2)
        (models, test_accuracies, test_costs) = ann.train()

        best_test_accuracy = 0
        best_i = -1
        for i in range(0, len(test_accuracies)):
            if (test_accuracies[i] > best_test_accuracy):
                best_test_accuracy = test_accuracies[i]
                best_i = i

        if (best_i > -1):
            model_name = models[i].name
            directory = '../Ann-models'
            path_to_file = directory + '/' + model_name
            if not os.path.exists(directory):
                os.makedirs(directory)
            pickle.dump(models[i], open(path_to_file, 'wb'))
        else:
            logger.error('Error!')
示例#2
0
文件: Ann_test.py 项目: kod3r/Ann
    def test_10(self):
        """Creates a fake data-set with points labeled 'yes' around origin and points labeled 'no' outside"""
        arrs = []
        labels = []
        """Points about the origin (located in a box of length 16 centered at origin)"""
        for i in range(0, 100):
            arr = [random.randint(0, 8) * np.sign(random.random() - 0.5) for x in range(0, 2)]
            label = "yes"
            arrs.append(arr)
            labels.append(label)
        """Points outside the box"""
        for i in range(0, 100):
            arr = [random.randint(10, 20) * np.sign(random.random() - 0.5) for x in range(0, 2)]
            label = "no"
            arrs.append(arr)
            labels.append(label)
        """Add some noise"""
        for i in range(0, 10):
            arr = [random.randint(0, 8) * np.sign(random.random() - 0.5) for x in range(0, 2)]
            label = "no"  # Note: this is artificially misclassified
            arrs.append(arr)
            labels.append(label)
        for i in range(0, 10):
            arr = [random.randint(10, 20) * np.sign(random.random() - 0.5) for x in range(0, 2)]
            label = "yes"  # Note: this is artificially misclassified
            arrs.append(arr)
            labels.append(label)

        ann = Ann(arrs, labels, n_h=2)
        (models, test_accuracies, test_costs) = ann.train()

        best_test_accuracy = 0
        best_i = -1
        for i in range(0, len(test_accuracies)):
            if test_accuracies[i] > best_test_accuracy:
                best_test_accuracy = test_accuracies[i]
                best_i = i

        if best_i > -1:
            model_name = models[i].name
            directory = "../Ann-models"
            path_to_file = directory + "/" + model_name
            if not os.path.exists(directory):
                os.makedirs(directory)
            pickle.dump(models[i], open(path_to_file, "wb"))
        else:
            print("Error!")
示例#3
0
 def test_10(self):
     '''Creates a fake data-set with points labeled 'yes' around origin and points labeled 'no' outside'''
     arrs = []
     labels = []
     '''Points about the origin (located in a box of length 16 centered at origin)'''
     for i in range(0, 10):
         arr = [random.randint(0, 8) * np.sign(random.random() - 0.5) for x in range(0, 2)]
         label = 'yes'
         arrs.append(arr)
         labels.append(label)
     '''Points outside the box'''
     for i in range(0, 10):
         arr = [random.randint(10, 20) * np.sign(random.random() - 0.5) for x in range(0, 2)]
         label = 'no'
         arrs.append(arr)
         labels.append(label)
     '''Add some noise'''
     for i in range(0, 2):
         arr = [random.randint(0, 8) * np.sign(random.random() - 0.5) for x in range(0, 2)]
         label = 'no'  # Note: this is artificially misclassified
         arrs.append(arr)
         labels.append(label)
     for i in range(0, 10):
         arr = [random.randint(10, 20) * np.sign(random.random() - 0.5) for x in range(0, 2)]
         label = 'yes'  # Note: this is artificially misclassified
         arrs.append(arr)
         labels.append(label)
          
     ann = Ann(arrs, labels, n_h=2)
     (models, test_accuracies, test_costs) = ann.train()
      
     best_test_accuracy = 0
     best_i = -1
     for i in range(0, len(test_accuracies)):
         if (test_accuracies[i] > best_test_accuracy):
             best_test_accuracy = test_accuracies[i]
             best_i = i
              
     if (best_i > -1):
         model_name = models[i].name
         directory = '../Ann-models'
         path_to_file = directory + '/' + model_name
         if not os.path.exists(directory):
             os.makedirs(directory)
         pickle.dump(models[i], open(path_to_file, 'wb'))
     else:
         logger.error('Error!')
    def get_particle(self):
        ann = Ann()
        ann.x_train_set = self.x_train
        ann.y_train_set = self.y_train
        ann.x_valid_set = self.x_valid
        ann.y_valid_set = self.y_valid
        ann.x_test_set = self.x_test
        ann.y_test_set = self.y_test

        particle = ParticleAnn(ann)
        return particle
示例#5
0
    def test_1(self):
        classes = ('smiley', 'frowny')
        arrs = []
        labels = []
        file_names = []

        for c in classes:
            files = [name for name in os.listdir('../library/' + c)]
            for el in files:
                img = Image.open('../library/' + c + '/' + el).convert('L')
                img = img.resize((50, 50), Image.ANTIALIAS)
                arrs.append(img.getdata())
                labels.append(c)
                file_names.append(el)

        name = '../Ann-models/model_n_i_2500_n_o_34_n_h_2 2015-05-27 22:15:24.990089.annm'
        model = pickle.load(open(name, 'rb'))[0][0]
        ann = Ann(model)
        print(ann.h(arrs[0]))
示例#6
0
 def non_test_6(self):
     # Test if training works by checking that training lowers the cost for random small and medium size data-sets#
      
     # Small size random data-set with two labels
     arrs = []
     labels = []
     classes = ('cat', 'dog')
     for i in range(0, 1):
         print('\nTesting data-set ' + str(i))
         for m in range(0, 10):
             arr = [random.random() for x in range(0, 3)]
             label = classes[random.random() > 0.5]
             arrs.append(arr)
             labels.append(label)
         ann = Ann(arrs, labels)  # Create Ann with these train_examples and labels
         cost_before = ann.cost()
         ann.train()
         cost_after = ann.cost()
         self.assertTrue(cost_after <= cost_before)
          
     # Medium size random data-set with three labels
     arrs = []
     labels = []
     classes = ('cat', 'dog', 'bird')
     for i in range(0, 1):
         print('\nTesting data-set ' + str(i))
         for m in range(0, 10):
             arr = [random.random() for x in range(0, 5)]
             z = random.random()
             if (z < 0.33):
                 label = classes[0]
             elif (z >= 0.33 and z < 0.66):
                 label = classes[1]
             else:
                 label = classes[2]
             arrs.append(arr)
             labels.append(label)
         ann = Ann(arrs, labels)  # Create Ann with these train_examples and labels
         cost_before = ann.cost()
         ann.train()
         cost_after = ann.cost()
         self.assertTrue(cost_after <= cost_before)
 def test_1(self):
     classes = ('smiley', 'frowny')
     arrs = []
     labels = []
     file_names = []
 
     for c in classes:
         files = [name for name in os.listdir('../library/' + c)]
         for el in files:
             img = Image.open('../library/' + c + '/' + el).convert('L')
             img = img.resize((50, 50), Image.ANTIALIAS)
             arrs.append(img.getdata())
             labels.append(c)
             file_names.append(el)
     
     
     name = '../Ann-models/model_n_i_2500_n_o_34_n_h_2 2015-05-27 22:15:24.990089.annm'
     model = pickle.load(open(name, 'rb'))[0][0]
     ann = Ann(model)
     print(ann.h(arrs[0]))
    def test_5(self):
        # Comprehensive gradient checking #

        # Medium size data-set with more than two classes
        arrs = []
        labels = []
        classes = ('cat', 'dog', 'bird', 'turtle', 'dinosaur', 'human')
        for m in range(0, 100):
            arr = [random.random() for x in range(0, 200)]
            z = random.random()
            if (z < 1 / 6):
                label = classes[0]
            elif (z >= 1 / 6 and z < 2 / 6):
                label = classes[1]
            elif (z >= 2 / 6 and z < 3 / 6):
                label = classes[2]
            elif (z >= 3 / 6 and z < 4 / 6):
                label = classes[3]
            elif (z >= 4 / 6 and z < 5 / 6):
                label = classes[4]
            else:
                label = classes[5]
            arrs.append(arr)
            labels.append(label)
        ann = Ann(arrs, labels,
                  n_h=2)  # Create Ann with these train_examples and labels
        # L-1 matrices of partial derivatives for first example
        J = ann.backward_batch()
        T_original = copy.deepcopy(ann.Thetas)

        # Just check the neuron connections between first, second, and third layer
        for l in range(0, 2):
            shape_J = J[l].shape
            eps = 0.0001  # epsilon for a numerical approximation of the gradient
            # Randomly select 100 neuron connections to check
            a = random.sample(range(0, shape_J[0]), 10)
            b = random.sample(range(0, shape_J[1]), 10)
            for i in a:
                for j in b:
                    T_e = np.zeros(shape_J)  # Matrix of zeros
                    T_e[i][j] = eps
                    ann.Thetas[l] = T_original[l] + T_e
                    cost_e = ann.cost()  # Cost at Theta + eps
                    ann.Thetas[l] = T_original[l] - T_e
                    cost_minus_e = ann.cost()  # Cost at Theta - eps
                    P = (cost_e - cost_minus_e) / (2 * eps
                                                   )  # Numerical approximation
                    J_ij = J[l].item(i, j)  # Backpropagation derivation

                    self.assertAlmostEqual(P, J_ij, delta=0.001)
                    ann.Thetas = copy.deepcopy(T_original)
示例#9
0
文件: Ann_test.py 项目: kod3r/Ann
    def test_5(self):
        # Comprehensive gradient checking #

        # Medium size data-set with more than two classes
        arrs = []
        labels = []
        classes = ("cat", "dog", "bird", "turtle", "dinosaur", "human")
        for m in range(0, 100):
            arr = [random.random() for x in range(0, 200)]
            z = random.random()
            if z < 1 / 6:
                label = classes[0]
            elif z >= 1 / 6 and z < 2 / 6:
                label = classes[1]
            elif z >= 2 / 6 and z < 3 / 6:
                label = classes[2]
            elif z >= 3 / 6 and z < 4 / 6:
                label = classes[3]
            elif z >= 4 / 6 and z < 5 / 6:
                label = classes[4]
            else:
                label = classes[5]
            arrs.append(arr)
            labels.append(label)
        ann = Ann(arrs, labels, n_h=2)  # Create Ann with these train_examples and labels
        # L-1 matrices of partial derivatives for first example
        J = ann.backward_batch()
        T_original = copy.deepcopy(ann.Thetas)

        # Just check the neuron connections between first, second, and third layer
        for l in range(0, 2):
            shape_J = J[l].shape
            eps = 0.0001  # epsilon for a numerical approximation of the gradient
            # Randomly select 100 neuron connections to check
            a = random.sample(range(0, shape_J[0]), 10)
            b = random.sample(range(0, shape_J[1]), 10)
            for i in a:
                for j in b:
                    T_e = np.zeros(shape_J)  # Matrix of zeros
                    T_e[i][j] = eps
                    ann.Thetas[l] = T_original[l] + T_e
                    cost_e = ann.cost()  # Cost at Theta + eps
                    ann.Thetas[l] = T_original[l] - T_e
                    cost_minus_e = ann.cost()  # Cost at Theta - eps
                    P = (cost_e - cost_minus_e) / (2 * eps)  # Numerical approximation
                    J_ij = J[l].item(i, j)  # Backpropagation derivation

                    print(P, "\t", J_ij, "\t", abs(P - J_ij), (l, i, j))

                    # if (P < 0 and J_ij > 0 or P > 0 and J_ij < 0):
                    #    self.fail()

                    self.assertAlmostEqual(P, J_ij, delta=0.001)
                    ann.Thetas = copy.deepcopy(T_original)
    def test_3(self):

        # Test the dimensions of the Jacobian matrices against Theta matrices for first architecture#
        n_i1 = 4  # Number of input neurons
        n_h1 = 2  # Number of hidden layers
        n_o1 = 2  # Number of output neurons

        ann1 = Ann(n_i=n_i1, n_h=n_h1, n_o=n_o1)  # Create this architecture
        x1 = [1, 2, 3, 4]  # Array as first example
        y1 = [1, 0]
        J = ann1.backward(x1, y1)
        for l in range(0, ann1.L - 1):
            self.assertEqual(ann1.Thetas[l].shape, J[l].shape)

        # Test the dimensions of the Jacobian matrices against Theta matrices for second architecture#
        n_i1 = 40  # Number of input neurons
        n_h1 = 3  # Number of hidden layers
        n_o1 = 10  # Number of output neurons

        ann1 = Ann(n_i=n_i1, n_h=n_h1, n_o=n_o1)  # Create this architecture
        x1 = 10 * [1, 2, 3, 4]  # Array as first example
        y1 = [1, 0, 1, 1, 0, 0, 1, 0, 1, 0]
        J = ann1.backward(x1, y1)
        for l in range(0, ann1.L - 1):
            self.assertEqual(ann1.Thetas[l].shape, J[l].shape)

        # Test the dimensions of the Jacobian matrices against Theta matrices for third architecture#
        n_i1 = 40  # Number of input neurons
        n_h1 = 0  # Number of hidden layers
        n_o1 = 10  # Number of output neurons

        ann1 = Ann(n_i=n_i1, n_h=n_h1, n_o=n_o1)  # Create this architecture
        x1 = 10 * [1, 2, 3, 4]  # Array as first example
        y1 = [1, 0, 1, 1, 0, 0, 1, 0, 1, 0]
        J = ann1.backward(x1, y1)
        for l in range(0, ann1.L - 1):
            self.assertEqual(ann1.Thetas[l].shape, J[l].shape)
示例#11
0
 def test_3(self):
      
     # Test the dimensions of the Jacobian matrices against Theta matrices for first architecture#
     n_i1 = 4  # Number of input neurons
     n_h1 = 2  # Number of hidden layers
     n_o1 = 2  # Number of output neurons
      
     ann1 = Ann(n_i=n_i1, n_h=n_h1, n_o=n_o1)  # Create this architecture
     x1 = [1, 2, 3, 4]  # Array as first example
     y1 = [1, 0]
     J = ann1.backward(x1, y1)
     for l in range(0, ann1.L - 1):
         self.assertEqual(ann1.Thetas[l].shape, J[l].shape)
          
     # Test the dimensions of the Jacobian matrices against Theta matrices for second architecture#
     n_i1 = 40  # Number of input neurons
     n_h1 = 3  # Number of hidden layers
     n_o1 = 10  # Number of output neurons
      
     ann1 = Ann(n_i=n_i1, n_h=n_h1, n_o=n_o1)  # Create this architecture
     x1 = 10 * [1, 2, 3, 4]  # Array as first example
     y1 = [1, 0, 1, 1, 0, 0, 1, 0, 1, 0]
     J = ann1.backward(x1, y1)
     for l in range(0, ann1.L - 1):
         self.assertEqual(ann1.Thetas[l].shape, J[l].shape)
          
     # Test the dimensions of the Jacobian matrices against Theta matrices for third architecture#
     n_i1 = 40  # Number of input neurons
     n_h1 = 0  # Number of hidden layers
     n_o1 = 10  # Number of output neurons
      
     ann1 = Ann(n_i=n_i1, n_h=n_h1, n_o=n_o1)  # Create this architecture
     x1 = 10 * [1, 2, 3, 4]  # Array as first example
     y1 = [1, 0, 1, 1, 0, 0, 1, 0, 1, 0]
     J = ann1.backward(x1, y1)
     for l in range(0, ann1.L - 1):
         self.assertEqual(ann1.Thetas[l].shape, J[l].shape)
示例#12
0
 def test_2(self):
     # Test for forward-propagation#
      
     # First architecture test#
     # Logistic regression (0 hidden layers) forward propagation test#
     n_i1 = 4  # Number of input neurons
     n_h1 = 0  # Number of hidden layers
     n_o1 = 1  # Number of output neurons
      
     ann1 = Ann(n_i=n_i1, n_h=n_h1, n_o=n_o1)  # Create this architecture
     x1 = [1, 2, 3, 4]  # Array as first example
     x2 = [-1, -1, -1, -1]  # Array as second example
      
     # Set all weights to zero#
     for i in range(0, len(ann1.Thetas)):
         shape = ann1.Thetas[i].shape
         self.assertEqual(shape, (1, 5))
         ann1.Thetas[i] = np.zeros(shape)
     self.assertEqual(ann1.h(x1), 0.5)
     self.assertEqual(ann1.h(x2), 0.5)
      
     # Set all weights to one#
     for i in range(0, len(ann1.Thetas)):
         shape = ann1.Thetas[i].shape
         self.assertEqual(shape, (1, 5))
         ann1.Thetas[i] = np.ones(shape)
     self.assertAlmostEqual(ann1.h(x1), 0.999, delta=0.001)
     self.assertAlmostEqual(ann1.h(x2), 0.0474, delta=0.0001)
      
     # Set all weights randomly between -1 and 1 (and test the range of output)#
     ann1 = Ann(n_i=n_i1, n_h=n_h1, n_o=n_o1)  # Create this architecture
     self.assertAlmostEqual(ann1.h(x1), 0.5, delta=0.5)  # Sigmoid always gives values between 0 and 1
     self.assertAlmostEqual(ann1.h(x2), 0.5, delta=0.5)
      
     # Custom Thetas weights#
     M = np.matrix([[1, -1, 0.5, -0.3, 2]])
     ann1.Thetas[0] = M
     self.assertAlmostEqual(ann1.h(x1), 0.786, delta=0.001)
     self.assertAlmostEqual(ann1.h(x2), 0.858, delta=0.001)
      
     # Second architecture test#
     # 1 hidden layer forward propagation test#
     n_i1 = 4  # Number of input neurons
     n_h1 = 1  # Number of hidden layers
     n_o1 = 1  # Number of output neurons
      
     ann1 = Ann(n_i=n_i1, n_h=n_h1, n_o=n_o1)  # Create this architecture
     x1 = [1, 2, 3, 4]  # Array as first example
     x2 = [-1, -1, -1, -1]  # Array as second example
      
     # Set all weights to zero#
     for i in range(0, len(ann1.Thetas)):
         shape = ann1.Thetas[i].shape
         ann1.Thetas[i] = np.zeros(shape)
     self.assertEqual(ann1.h(x1), 0.5)
     self.assertEqual(ann1.h(x2), 0.5)
      
     # Set all weights to one#
     for i in range(0, len(ann1.Thetas)):
         shape = ann1.Thetas[i].shape
         ann1.Thetas[i] = np.ones(shape)
     self.assertAlmostEqual(ann1.h(x1), 0.993, delta=0.001)
     self.assertAlmostEqual(ann1.h(x2), 0.767, delta=0.001)  
      
     # Set all weights randomly between -1 and 1 (and test the range of output)#
     ann1 = Ann(n_i=n_i1, n_h=n_h1, n_o=n_o1)  # Create this architecture
     self.assertAlmostEqual(ann1.h(x1), 0.5, delta=0.5)  # Sigmoid always gives values between 0 and 1
     self.assertAlmostEqual(ann1.h(x2), 0.5, delta=0.5)
      
     # Custom Thetas weights#
     M1 = np.matrix([[1, -1, 0.5, -0.3, 2],
                    [1, -1, 0.5, -0.3, 2],
                    [1, -1, 0.5, -0.3, 2],
                    [1, -1, 0.5, -0.3, 2]])
     M2 = np.matrix([[1, 1, -1, 0.5, -1]])
     ann1.Thetas[0] = M1
     ann1.Thetas[1] = M2
     # a^(1) Should be [0.786 0.786 0.786 0.786 1]^T#
     self.assertAlmostEqual(ann1.h(x1), 0.545, delta=0.001)
     # a^(1) Should be [0.858 0.858 0.858 0.858 1]^T#
     self.assertAlmostEqual(ann1.h(x2), 0.571, delta=0.001)
示例#13
0
            labels.append(label)
        for i in range(0, 10):
            arr = [random.randint(10, 20) * np.sign(random.random() - 0.5) for x in range(0, 2)]
            label = 'yes'  # Note: this is artificially misclassified
            arrs.append(arr)
            labels.append(label)
             
        ann = Ann(arrs, labels, n_h=2)
        (models, test_accuracies, test_costs) = ann.train()
         
        best_test_accuracy = 0
        best_i = -1
        for i in range(0, len(test_accuracies)):
            if (test_accuracies[i] > best_test_accuracy):
                best_test_accuracy = test_accuracies[i]
                best_i = i
                 
        if (best_i > -1):
            model_name = models[i].name
            directory = '../Ann-models'
            path_to_file = directory + '/' + model_name
            if not os.path.exists(directory):
                os.makedirs(directory)
            pickle.dump(models[i], open(path_to_file, 'wb'))
        else:
            logger.error('Error!')
    
if __name__ == "__main__":
    Ann.init_logger('debug')
    unittest.main()
示例#14
0
文件: Ann_demo.py 项目: kod3r/Ann
def demo_helper():
    print('\t** Learn the AND function using 0 hidden layers (logistic regression) **')
    arrs = []
    labels = []
    (arrs.append([0, 0]), labels.append('false')) 
    (arrs.append([0, 1]), labels.append('true'))
    (arrs.append([1, 0]), labels.append('true'))
    (arrs.append([1, 1]), labels.append('true'))
    num_hidden_layers = 0
    ann = Ann(arrs, labels, n_h=num_hidden_layers)
    ann.train()
    if (ann.validate_train() == 1):
        print('\t** The AND function was learned correctly using 0 hidden layers **\n')
    else:
        print('\t** ERROR (when learning the AND function using 0 hidden layers **\n')
    
    print('\t** Learn the AND function using 1 hidden layer **')
    arrs = []
    labels = []
    (arrs.append([0, 0]), labels.append('false')) 
    (arrs.append([0, 1]), labels.append('true'))
    (arrs.append([1, 0]), labels.append('true'))
    (arrs.append([1, 1]), labels.append('true'))
    num_hidden_layers = 1
    ann = Ann(arrs, labels, n_h=num_hidden_layers)
    ann.train()
    if (ann.validate_train() == 1):
        print('\t** The AND function was learned correctly using 1 hidden layers **\n')
    else:
        print('\t** ERROR (when learning the AND function using 1 hidden layers **\n')
        

    print('\t** Learn the XOR function using 0 hidden layers (logistic regression) **')
    arrs = []
    labels = []
    (arrs.append([0, 0]), labels.append('false')) 
    (arrs.append([0, 1]), labels.append('true'))
    (arrs.append([1, 0]), labels.append('true'))
    (arrs.append([1, 1]), labels.append('false'))
    num_hidden_layers = 0
    ann = Ann(arrs, labels, n_h=num_hidden_layers)
    ann.train()
    if (ann.validate_train() != 1):
        print('\t** The XOR function was not learned correctly (as expected) because logistic regression (0 hidden layers) \n' + 
              'cannot create a boundary through a non-linearly separable data-set (which the XOR function is)**\n')
    else:
        print('\t** ERROR (when learning the XOR function using 0 hidden layers **\n')
    
    '''
    def non_test_6(self):
        # Test if training works by checking that training lowers the cost for random small and medium size data-sets#

        # Small size random data-set with two labels
        arrs = []
        labels = []
        classes = ('cat', 'dog')
        for i in range(0, 1):
            print('\nTesting data-set ' + str(i))
            for m in range(0, 10):
                arr = [random.random() for x in range(0, 3)]
                label = classes[random.random() > 0.5]
                arrs.append(arr)
                labels.append(label)
            ann = Ann(
                arrs,
                labels)  # Create Ann with these train_examples and labels
            cost_before = ann.cost()
            ann.train()
            cost_after = ann.cost()
            self.assertTrue(cost_after <= cost_before)

        # Medium size random data-set with three labels
        arrs = []
        labels = []
        classes = ('cat', 'dog', 'bird')
        for i in range(0, 1):
            print('\nTesting data-set ' + str(i))
            for m in range(0, 10):
                arr = [random.random() for x in range(0, 5)]
                z = random.random()
                if (z < 0.33):
                    label = classes[0]
                elif (z >= 0.33 and z < 0.66):
                    label = classes[1]
                else:
                    label = classes[2]
                arrs.append(arr)
                labels.append(label)
            ann = Ann(
                arrs,
                labels)  # Create Ann with these train_examples and labels
            cost_before = ann.cost()
            ann.train()
            cost_after = ann.cost()
            self.assertTrue(cost_after <= cost_before)
示例#16
0
    def test_9(self):
        # function 1 (XOR function) on 1 hidden layers
        arrs = []
        arrs.append([0, 0])
        arrs.append([0, 1])
        arrs.append([1, 0])
        arrs.append([1, 1])
        labels = []
        labels.append('false')
        labels.append('true')
        labels.append('true')
        labels.append('false') 
        ann = Ann(arrs, labels, n_h=1)
        # Train and save model
        model = ann.train()[0][0]  # Take the first model from the list of models in the tuple
        ann.validate_train()
        # Check to see if train_accuracy is over 90%
        self.assertTrue(ann.train_accuracy() > 0.9)
         
        # Load the trained model into a new neural network
        ann_from_model = Ann(model)
        # Evaluate some vectors using this neural network initialized only with a model
        self.assertEqual(ann_from_model.h_by_class(arrs[0]), 'false')
        self.assertEqual(ann_from_model.h_by_class(arrs[1]), 'true')
        x = [1.1, 0.9]
        self.assertEqual(ann_from_model.h_by_class(x), 'false')
 
        # function 2 on 2 hidden layers
        arrs2 = []
        arrs2.append([1, 1])
        arrs2.append([2, 2])
        arrs2.append([1, 3])
        arrs2.append([2, 10])
        arrs2.append([1, -1])
        arrs2.append([-2, -2])
        arrs2.append([1, -3])
        arrs2.append([-2, -10])
        labels2 = []
        labels2.append('false')
        labels2.append('false')
        labels2.append('false')
        labels2.append('false')
        labels2.append('true')
        labels2.append('true')
        labels2.append('true')
        labels2.append('true') 
        ann = Ann(arrs2, labels2, n_h=2)
        model2 = ann.train()[0][0]
        ann.validate_train()
         
        # Load the second model
        ann_from_model = Ann(model2)
        # Evaluate some vectors using this neural network initialized only with a model
        self.assertEqual(ann_from_model.h_by_class(arrs2[0]), 'false')
        self.assertEqual(ann_from_model.h_by_class(arrs2[len(arrs2) - 1]), 'true')
        x = [1, -5]
        self.assertEqual(ann_from_model.h_by_class(x), 'true')
         
        # Load the first model again
        ann_from_model = Ann(model)
        # Evaluate some vectors using this neural network initialized only with a model
        self.assertEqual(ann_from_model.h_by_class(arrs[0]), 'false')
        self.assertEqual(ann_from_model.h_by_class(arrs[1]), 'true')
        x = [1.1, 0.9]
        self.assertEqual(ann_from_model.h_by_class(x), 'false')
         
        # Try pickling our model into a sister folder
        model_name = model.name
        directory = '../Ann-models'
        path_to_file = directory + '/' + model_name
        if not os.path.exists(directory):
            os.makedirs(directory)
        pickle.dump(model, open(path_to_file, 'wb'))
         
        # Try unpickling our model
        unpickled_model = pickle.load(open(path_to_file, 'rb'))
        # Load unpickled model and test
        ann_from_pickle = Ann(unpickled_model)
        # Evaluate some vectors using this neural network initialized only with a model
        self.assertEqual(ann_from_pickle.h_by_class(arrs[0]), 'false')
        self.assertEqual(ann_from_pickle.h_by_class(arrs[1]), 'true')
        x = [1.1, 0.9]
        self.assertEqual(ann_from_pickle.h_by_class(x), 'false')
示例#17
0
    def test_7(self):
        # Learn some basic functions#
        # Linearly-separable data-sets#
         
        # function 1 (AND function) on 0 hidden layers
        arrs = []
        arrs.append([0, 0])
        arrs.append([0, 1])
        arrs.append([1, 0])
        arrs.append([1, 1])
        labels = []
        labels.append('false')
        labels.append('true')
        labels.append('true')
        labels.append('true') 
        ann = Ann(arrs, labels, n_h=0)
        ann.train()
        ann.validate_train()
        # Check to see if train_accuracy is over 90%
        self.assertTrue(ann.train_accuracy() > 0.9)
        # function 2 on 2 hidden layers
        arrs = []
        arrs.append([1, 1])
        arrs.append([2, 2])
        arrs.append([1, 3])
        arrs.append([2, 10])
        arrs.append([1, -1])
        arrs.append([-2, -2])
        arrs.append([1, -3])
        arrs.append([-2, -10])
        labels = []
        labels.append('false')
        labels.append('false')
        labels.append('false')
        labels.append('false')
        labels.append('true')
        labels.append('true')
        labels.append('true')
        labels.append('true') 
        ann = Ann(arrs, labels, n_h=2)
        ann.train()
        ann.validate_train()
        # Check to see if train_accuracy is over 90%
        self.assertTrue(ann.train_accuracy() > 0.9)
         
         
        # Non-linearly-separable data-sets#
         
        
        # function 1 (XOR function) on 1 hidden layers
        arrs = []
        arrs.append([0, 0])
        arrs.append([0, 1])
        arrs.append([1, 0])
        arrs.append([1, 1])
        labels = []
        labels.append('false')
        labels.append('true')
        labels.append('true')
        labels.append('false') 
        ann = Ann(arrs, labels, n_h=1)
        ann.train(it=3000)
        ann.validate_train()
        # Check to see if train_accuracy is over 90%
        self.assertTrue(ann.train_accuracy() > 0.9)
         
        # function 1b (XOR function) on 1 hidden layers (with custom architecture)
        arrs = []
        arrs.append([0, 0])
        arrs.append([0, 1])
        arrs.append([1, 0])
        arrs.append([1, 1])
        labels = []
        labels.append('false')
        labels.append('true')
        labels.append('true')
        labels.append('false')
        s = [4, 5]  # Custom hidden layer architecture
        ann = Ann(arrs, labels, n_h=len(s), s=s)
        ann.train()
        ann.validate_train()
        # Check to see if train_accuracy is over 90%
        self.assertTrue(ann.train_accuracy() > 0.9)
             
 
        # function 1 (two nested sets) on 2 hidden layers
        arrs = []
        arrs.append([0, 0])
        arrs.append([0, 1])
        arrs.append([1, 1])
        arrs.append([1, 1])
        arrs.append([10, 0])
        arrs.append([0, 10])
        arrs.append([110, 10])
        arrs.append([-10, 10])
        labels = []
        labels.append('false')
        labels.append('false')
        labels.append('false')
        labels.append('false') 
        labels.append('true')
        labels.append('true')
        labels.append('true')
        labels.append('true') 
        ann = Ann(arrs, labels, n_h=0)
        ann.train()
        ann.validate_train()
        # Check to see if train_accuracy is over 90%
        self.assertTrue(ann.train_accuracy() > 0.9)
    def test_2(self):
        # Test for forward-propagation#

        # First architecture test#
        # Logistic regression (0 hidden layers) forward propagation test#
        n_i1 = 4  # Number of input neurons
        n_h1 = 0  # Number of hidden layers
        n_o1 = 1  # Number of output neurons

        ann1 = Ann(n_i=n_i1, n_h=n_h1, n_o=n_o1)  # Create this architecture
        x1 = [1, 2, 3, 4]  # Array as first example
        x2 = [-1, -1, -1, -1]  # Array as second example

        # Set all weights to zero#
        for i in range(0, len(ann1.Thetas)):
            shape = ann1.Thetas[i].shape
            self.assertEqual(shape, (1, 5))
            ann1.Thetas[i] = np.zeros(shape)
        self.assertEqual(ann1.h(x1), 0.5)
        self.assertEqual(ann1.h(x2), 0.5)

        # Set all weights to one#
        for i in range(0, len(ann1.Thetas)):
            shape = ann1.Thetas[i].shape
            self.assertEqual(shape, (1, 5))
            ann1.Thetas[i] = np.ones(shape)
        self.assertAlmostEqual(ann1.h(x1), 0.999, delta=0.001)
        self.assertAlmostEqual(ann1.h(x2), 0.0474, delta=0.0001)

        # Set all weights randomly between -1 and 1 (and test the range of output)#
        ann1 = Ann(n_i=n_i1, n_h=n_h1, n_o=n_o1)  # Create this architecture
        self.assertAlmostEqual(
            ann1.h(x1), 0.5,
            delta=0.5)  # Sigmoid always gives values between 0 and 1
        self.assertAlmostEqual(ann1.h(x2), 0.5, delta=0.5)

        # Custom Thetas weights#
        M = np.matrix([[1, -1, 0.5, -0.3, 2]])
        ann1.Thetas[0] = M
        self.assertAlmostEqual(ann1.h(x1), 0.786, delta=0.001)
        self.assertAlmostEqual(ann1.h(x2), 0.858, delta=0.001)

        # Second architecture test#
        # 1 hidden layer forward propagation test#
        n_i1 = 4  # Number of input neurons
        n_h1 = 1  # Number of hidden layers
        n_o1 = 1  # Number of output neurons

        ann1 = Ann(n_i=n_i1, n_h=n_h1, n_o=n_o1)  # Create this architecture
        x1 = [1, 2, 3, 4]  # Array as first example
        x2 = [-1, -1, -1, -1]  # Array as second example

        # Set all weights to zero#
        for i in range(0, len(ann1.Thetas)):
            shape = ann1.Thetas[i].shape
            ann1.Thetas[i] = np.zeros(shape)
        self.assertEqual(ann1.h(x1), 0.5)
        self.assertEqual(ann1.h(x2), 0.5)

        # Set all weights to one#
        for i in range(0, len(ann1.Thetas)):
            shape = ann1.Thetas[i].shape
            ann1.Thetas[i] = np.ones(shape)
        self.assertAlmostEqual(ann1.h(x1), 0.993, delta=0.001)
        self.assertAlmostEqual(ann1.h(x2), 0.767, delta=0.001)

        # Set all weights randomly between -1 and 1 (and test the range of output)#
        ann1 = Ann(n_i=n_i1, n_h=n_h1, n_o=n_o1)  # Create this architecture
        self.assertAlmostEqual(
            ann1.h(x1), 0.5,
            delta=0.5)  # Sigmoid always gives values between 0 and 1
        self.assertAlmostEqual(ann1.h(x2), 0.5, delta=0.5)

        # Custom Thetas weights#
        M1 = np.matrix([[1, -1, 0.5, -0.3, 2], [1, -1, 0.5, -0.3, 2],
                        [1, -1, 0.5, -0.3, 2], [1, -1, 0.5, -0.3, 2]])
        M2 = np.matrix([[1, 1, -1, 0.5, -1]])
        ann1.Thetas[0] = M1
        ann1.Thetas[1] = M2
        # a^(1) Should be [0.786 0.786 0.786 0.786 1]^T#
        self.assertAlmostEqual(ann1.h(x1), 0.545, delta=0.001)
        # a^(1) Should be [0.858 0.858 0.858 0.858 1]^T#
        self.assertAlmostEqual(ann1.h(x2), 0.571, delta=0.001)
def pso_optimization(generate_validation_set,
                     n_fold,
                     x_train,
                     y_train,
                     x_valid,
                     y_valid,
                     x_test,
                     y_test,
                     initialization_type=pso.InitializationType.QUASI_RANDOM,
                     use_local_search=False):
    print("\nReading dataset...")

    print("\n**** Dataset statistics *****")
    print("Training samples: " + str(len(x_train)))
    if generate_validation_set:
        print("Validation samples: " + str(len(x_valid)))
    print("Test samples: " + str(len(x_test)))

    if generate_validation_set:
        particleFactory = ParticleAnnFactory(x_train, y_train, x_valid,
                                             y_valid, x_test, y_test)
    else:
        particleFactory = ParticleAnnKFoldFactory(x_train, y_train, x_test,
                                                  y_test, n_fold)

    n = 2  # Problem dimension (hyperparameters to be tuned)

    # *** Setting PSO algorithm hyperparameters

    layers_bounds = (1, 10)
    neurons_bounds = (4, 384)

    pso_hyperparameters = pso.PSOHyperparameters(n)
    pso_hyperparameters.w_start = 0.9
    pso_hyperparameters.w_end = 0.4
    pso_hyperparameters.c1 = 0.5
    pso_hyperparameters.c2 = 0.5
    pso_hyperparameters.swarm_size = 10
    pso_hyperparameters.num_generations = 10
    pso_hyperparameters.max_velocity = [3, 32]
    pso_hyperparameters.initialization_type = initialization_type
    pso_hyperparameters.use_local_search = use_local_search

    logging.info("\n\n***** PSO Configuration ******")
    logging.info("w_start : " + str(pso_hyperparameters.w_start))
    logging.info("w_end : " + str(pso_hyperparameters.w_end))
    logging.info("c1 : " + str(pso_hyperparameters.c1))
    logging.info("c2 : " + str(pso_hyperparameters.c2))
    logging.info("swarm_size : " + str(pso_hyperparameters.swarm_size))
    logging.info("num_generations : " +
                 str(pso_hyperparameters.num_generations))
    logging.info("max_velocity : " + str(pso_hyperparameters.max_velocity))
    logging.info("bounds : " + str([layers_bounds, neurons_bounds]))
    logging.info("initialization type : " +
                 str(pso_hyperparameters.initialization_type))
    logging.info("use local search : " +
                 str(pso_hyperparameters.use_local_search))

    start = time.time()
    min_point, min_value = pso.get_minimum(particleFactory, n,
                                           [layers_bounds, neurons_bounds],
                                           pso_hyperparameters)
    end = time.time()

    hours, rem = divmod(end - start, 3600)
    minutes, seconds = divmod(rem, 60)

    print("\nMinimum point: " + str(min_point))
    print("Minimum value: " + str(min_value))
    print("Execution time : " +
          ("{:0>2}:{:0>2}:{:05.2f}".format(int(hours), int(minutes), seconds)))
    logging.info("\n\n***** Optimal configuration found by PSO ******")
    logging.info("N. hidden layers : " + str(min_point[0]))
    logging.info("N. neurons per layer : " + str(min_point[1]))
    logging.info("Accuracy on validation set : " + str(1 - min_value))
    logging.info("Execution time : " + (
        "{:0>2}:{:0>2}:{:05.2f}".format(int(hours), int(minutes), seconds)))

    # With the optimal structure found retrain the network and calculate accuracy on test set
    n_layers = int(min_point[0])
    n_neurons = int(min_point[1])

    if generate_validation_set:
        ann = Ann()
        ann.x_train_set = x_train
        ann.y_train_set = y_train
        ann.x_valid_set = x_valid
        ann.y_valid_set = y_valid
        ann.x_test_set = x_test
        ann.y_test_set = y_test
        ann.create_model(n_layers, n_neurons, len(ann.x_test_set[0]),
                         len(ann.y_test_set[0]))
    else:
        ann = Ann()
        ann.x_train_set = x_train
        ann.y_train_set = keras.utils.to_categorical(y_train, 2)
        ann.x_test_set = x_test
        ann.y_test_set = y_test
        ann.create_model(n_layers, n_neurons, len(ann.x_test_set[0]),
                         len(ann.y_test_set[0]))
        validation_split = 0.25
        ann.train_model(validation_split)

    accuracy = ann.evaluate_model()

    print("\nAccuracy with " + str(n_layers) + " layers and " +
          str(n_neurons) + " neurons: " + str(accuracy))
    logging.info("Accuracy on test set : " + str(accuracy))
def grid_search_optimization(generate_validation_set, n_fold, x_train, y_train,
                             x_valid, y_valid, x_test, y_test):
    grid = [
        [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
        # [4, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256, 272, 288, 304, 320, 336, 352, 368, 384]]
        [4, 32, 64, 96, 128, 160, 192, 224, 256, 288, 320, 352, 384]
    ]

    print("\n**** Dataset statistics *****")
    print("Training samples: " + str(len(x_train)))
    if generate_validation_set:
        print("Validation samples: " + str(len(x_valid)))
    print("Test samples: " + str(len(x_test)))

    logging.info("***** Grid Search configuration *****")
    logging.info("Grid: " + str(grid))

    start = time.time()
    if generate_validation_set:
        min_point, min_value = grid_search.grid_search(grid, x_train, y_train,
                                                       x_valid, y_valid,
                                                       x_test, y_test)
    else:
        min_point, min_value = grid_search.grid_search_k_fold(
            grid, x_train, y_train, x_test, y_test, n_fold)
    end = time.time()

    hours, rem = divmod(end - start, 3600)
    minutes, seconds = divmod(rem, 60)

    print("\nMinimum point: " + str(min_point))
    print("Minimum value: " + str(min_value))
    print("Execution time : " +
          ("{:0>2}:{:0>2}:{:05.2f}".format(int(hours), int(minutes), seconds)))
    logging.info("\n\n***** Optimal configuration found by Grid Search ******")
    logging.info("N. hidden layers : " + str(min_point[0]))
    logging.info("N. neurons per layer : " + str(min_point[1]))
    logging.info("Accuracy on validation set : " + str(min_value))
    logging.info("Execution time : " + (
        "{:0>2}:{:0>2}:{:05.2f}".format(int(hours), int(minutes), seconds)))

    # With the optimal structure found retrain the network and calculate accuracy on test set
    n_layers = int(min_point[0])
    n_neurons = int(min_point[1])

    if generate_validation_set:
        ann = Ann()
        ann.x_train_set = x_train
        ann.y_train_set = y_train
        ann.x_valid_set = x_valid
        ann.y_valid_set = y_valid
        ann.x_test_set = x_test
        ann.y_test_set = y_test
        ann.create_model(n_layers, n_neurons, len(ann.x_test_set[0]),
                         len(ann.y_test_set[0]))
    else:
        ann = Ann()
        ann.x_train_set = x_train
        ann.y_train_set = keras.utils.to_categorical(y_train, 2)
        ann.x_test_set = x_test
        ann.y_test_set = y_test
        ann.create_model(n_layers, n_neurons, len(ann.x_test_set[0]),
                         len(ann.y_test_set[0]))
        validation_split = 0.25
        ann.train_model(validation_split)

    accuracy = ann.evaluate_model()

    print("\nAccuracy with " + str(n_layers) + " layers and " +
          str(n_neurons) + " neurons: " + str(accuracy))
    logging.info("Accuracy on test set : " + str(accuracy))
def quasi_random_optimization(generate_validation_set, n_fold, x_train,
                              y_train, x_valid, y_valid, x_test, y_test):

    print("\n**** Dataset statistics *****")
    print("Training samples: " + str(len(x_train)))
    if generate_validation_set:
        print("Validation samples: " + str(len(x_valid)))
    print("Test samples: " + str(len(x_test)))

    n = 2  # Problem dimension (hyperparameters to be tuned)

    n_combinations = 10
    layers_bounds = (1, 10)
    neurons_bounds = (4, 384)

    logging.info("\n\n***** Quasi-Random Search Configuration ******")
    logging.info("combinations : " + str(n_combinations))
    logging.info("bounds : " + str([layers_bounds, neurons_bounds]))

    start = time.time()
    min_point, min_value = quasi_random_search.quasi_random_search(
        n_combinations, n, [layers_bounds, neurons_bounds], x_train, y_train,
        x_test, y_test, n_fold)
    end = time.time()

    hours, rem = divmod(end - start, 3600)
    minutes, seconds = divmod(rem, 60)

    print("\nMinimum point: " + str(min_point))
    print("Minimum value: " + str(min_value))
    print("Execution time : " +
          ("{:0>2}:{:0>2}:{:05.2f}".format(int(hours), int(minutes), seconds)))
    logging.info(
        "\n\n***** Optimal configuration found by Quasi-Random Search ******")
    logging.info("N. hidden layers : " + str(min_point[0]))
    logging.info("N. neurons per layer : " + str(min_point[1]))
    logging.info("Accuracy on validation set : " + str(1 - min_value))
    logging.info("Execution time : " + (
        "{:0>2}:{:0>2}:{:05.2f}".format(int(hours), int(minutes), seconds)))

    # With the optimal structure found retrain the network and calculate accuracy on test set
    n_layers = int(min_point[0])
    n_neurons = int(min_point[1])

    ann = Ann()
    ann.x_train_set = x_train
    ann.y_train_set = keras.utils.to_categorical(y_train, 2)
    ann.x_test_set = x_test
    ann.y_test_set = y_test
    ann.create_model(n_layers, n_neurons, len(ann.x_test_set[0]),
                     len(ann.y_test_set[0]))
    validation_split = 0.25
    ann.train_model(validation_split)

    accuracy = ann.evaluate_model()

    print("\nAccuracy with " + str(n_layers) + " layers and " +
          str(n_neurons) + " neurons: " + str(accuracy))
    logging.info("Accuracy on test set : " + str(accuracy))
    def test_9(self):
        # function 1 (XOR function) on 1 hidden layers
        arrs = []
        arrs.append([0, 0])
        arrs.append([0, 1])
        arrs.append([1, 0])
        arrs.append([1, 1])
        labels = []
        labels.append('false')
        labels.append('true')
        labels.append('true')
        labels.append('false')
        ann = Ann(arrs, labels, n_h=1)
        # Train and save model
        model = ann.train()[0][
            0]  # Take the first model from the list of models in the tuple
        ann.validate_train()
        # Check to see if train_accuracy is over 90%
        self.assertTrue(ann.train_accuracy() > 0.9)

        # Load the trained model into a new neural network
        ann_from_model = Ann(model)
        # Evaluate some vectors using this neural network initialized only with a model
        self.assertEqual(ann_from_model.h_by_class(arrs[0]), 'false')
        self.assertEqual(ann_from_model.h_by_class(arrs[1]), 'true')
        x = [1.1, 0.9]
        self.assertEqual(ann_from_model.h_by_class(x), 'false')

        # function 2 on 2 hidden layers
        arrs2 = []
        arrs2.append([1, 1])
        arrs2.append([2, 2])
        arrs2.append([1, 3])
        arrs2.append([2, 10])
        arrs2.append([1, -1])
        arrs2.append([-2, -2])
        arrs2.append([1, -3])
        arrs2.append([-2, -10])
        labels2 = []
        labels2.append('false')
        labels2.append('false')
        labels2.append('false')
        labels2.append('false')
        labels2.append('true')
        labels2.append('true')
        labels2.append('true')
        labels2.append('true')
        ann = Ann(arrs2, labels2, n_h=2)
        model2 = ann.train()[0][0]
        ann.validate_train()

        # Load the second model
        ann_from_model = Ann(model2)
        # Evaluate some vectors using this neural network initialized only with a model
        self.assertEqual(ann_from_model.h_by_class(arrs2[0]), 'false')
        self.assertEqual(ann_from_model.h_by_class(arrs2[len(arrs2) - 1]),
                         'true')
        x = [1, -5]
        self.assertEqual(ann_from_model.h_by_class(x), 'true')

        # Load the first model again
        ann_from_model = Ann(model)
        # Evaluate some vectors using this neural network initialized only with a model
        self.assertEqual(ann_from_model.h_by_class(arrs[0]), 'false')
        self.assertEqual(ann_from_model.h_by_class(arrs[1]), 'true')
        x = [1.1, 0.9]
        self.assertEqual(ann_from_model.h_by_class(x), 'false')

        # Try pickling our model into a sister folder
        model_name = model.name
        directory = '../Ann-models'
        path_to_file = directory + '/' + model_name
        if not os.path.exists(directory):
            os.makedirs(directory)
        pickle.dump(model, open(path_to_file, 'wb'))

        # Try unpickling our model
        unpickled_model = pickle.load(open(path_to_file, 'rb'))
        # Load unpickled model and test
        ann_from_pickle = Ann(unpickled_model)
        # Evaluate some vectors using this neural network initialized only with a model
        self.assertEqual(ann_from_pickle.h_by_class(arrs[0]), 'false')
        self.assertEqual(ann_from_pickle.h_by_class(arrs[1]), 'true')
        x = [1.1, 0.9]
        self.assertEqual(ann_from_pickle.h_by_class(x), 'false')
    def test_8(self):
        # First test#
        # 1 hidden layer cost test with regularization#
        x1 = [1, 2, 3, 4]  # Array as first example
        y1 = 'yes'
        arrs = []
        labels = []
        arrs.append(x1)
        labels.append(y1)
        ann1 = Ann(arrs, labels, n_h=1)  # Create this architecture

        # Custom Thetas weights#
        M1 = np.matrix([[1, -1, 0.5, -0.3, 2], [1, -1, 0.5, -0.3, 2],
                        [1, -1, 0.5, -0.3, 2], [1, -1, 0.5, -0.3, 2]])
        M2 = np.matrix([[1, 1, -1, 0.5, -1]])
        ann1.Thetas[0] = M1
        ann1.Thetas[1] = M2
        cost_0 = ann1.cost()  # lam equals 0
        cost_1 = ann1.cost(lam=1)  # lam equals 1
        self.assertTrue(
            cost_1 > cost_0
        )  # Cost with regularization penalty is always higher than without regularization

        # Gradient checking (now with regularization)#
        # Medium size data-set with several train_examples
        lam_test = 1  # Regularization parameter
        arrs = []
        labels = []
        classes = ('cat', 'dog')
        for m in range(0, 100):
            arr = [random.random() for x in range(0, 40)]
            label = classes[random.random() > 0.5]
            arrs.append(arr)
            labels.append(label)
        ann = Ann(arrs, labels,
                  n_h=2)  # Create Ann with these train_examples and labels
        # L-1 matrices of partial derivatives for first example
        J = ann.backward_batch(
            lam=lam_test, batch_size=1)  # Use full-batch for gradient descent
        T_original = copy.deepcopy(ann.Thetas)

        for l in range(0, ann.L - 1):
            shape_J = J[l].shape
            eps = 0.0001  # epsilon for a numerical approximation of the gradient
            a = random.sample(range(0, shape_J[0]), 2)
            b = random.sample(range(0, shape_J[1]), 2)
            for i in a:
                for j in b:
                    T_e = np.zeros(shape_J)  # Matrix of zeros
                    T_e[i][j] = eps
                    ann.Thetas[l] = T_original[l] + T_e
                    cost_e = ann.cost(lam=lam_test)  # Cost at Theta + eps
                    ann.Thetas[l] = T_original[l] - T_e
                    cost_minus_e = ann.cost(
                        lam=lam_test)  # Cost at Theta - eps
                    P = (cost_e - cost_minus_e) / (2 * eps
                                                   )  # Numerical approximation
                    J_ij = J[l].item(i, j)  # Backpropagation derivation

                    # print(P, '\t', J_ij, '\t', abs(P - J_ij), (l, i, j))

                    # if (P < 0 and J_ij > 0 or P > 0 and J_ij < 0):
                    #    self.fail()

                    self.assertAlmostEqual(P, J_ij, delta=0.001)
                    ann.Thetas = copy.deepcopy(T_original)
    def test_7(self):
        # Learn some basic functions#
        # Linearly-separable data-sets#

        # function 1 (AND function) on 0 hidden layers
        arrs = []
        arrs.append([0, 0])
        arrs.append([0, 1])
        arrs.append([1, 0])
        arrs.append([1, 1])
        labels = []
        labels.append('false')
        labels.append('true')
        labels.append('true')
        labels.append('true')
        ann = Ann(arrs, labels, n_h=0)
        ann.train()
        ann.validate_train()
        # Check to see if train_accuracy is over 90%
        self.assertTrue(ann.train_accuracy() > 0.9)
        # function 2 on 2 hidden layers
        arrs = []
        arrs.append([1, 1])
        arrs.append([2, 2])
        arrs.append([1, 3])
        arrs.append([2, 10])
        arrs.append([1, -1])
        arrs.append([-2, -2])
        arrs.append([1, -3])
        arrs.append([-2, -10])
        labels = []
        labels.append('false')
        labels.append('false')
        labels.append('false')
        labels.append('false')
        labels.append('true')
        labels.append('true')
        labels.append('true')
        labels.append('true')
        ann = Ann(arrs, labels, n_h=2)
        ann.train()
        ann.validate_train()
        # Check to see if train_accuracy is over 90%
        self.assertTrue(ann.train_accuracy() > 0.9)

        # Non-linearly-separable data-sets#

        # function 1 (XOR function) on 1 hidden layers
        arrs = []
        arrs.append([0, 0])
        arrs.append([0, 1])
        arrs.append([1, 0])
        arrs.append([1, 1])
        labels = []
        labels.append('false')
        labels.append('true')
        labels.append('true')
        labels.append('false')
        ann = Ann(arrs, labels, n_h=1)
        ann.train(it=3000)
        ann.validate_train()
        # Check to see if train_accuracy is over 90%
        self.assertTrue(ann.train_accuracy() > 0.9)

        # function 1b (XOR function) on 1 hidden layers (with custom architecture)
        arrs = []
        arrs.append([0, 0])
        arrs.append([0, 1])
        arrs.append([1, 0])
        arrs.append([1, 1])
        labels = []
        labels.append('false')
        labels.append('true')
        labels.append('true')
        labels.append('false')
        s = [4, 5]  # Custom hidden layer architecture
        ann = Ann(arrs, labels, n_h=len(s), s=s)
        ann.train()
        ann.validate_train()
        # Check to see if train_accuracy is over 90%
        self.assertTrue(ann.train_accuracy() > 0.9)

        # function 1 (two nested sets) on 2 hidden layers
        arrs = []
        arrs.append([0, 0])
        arrs.append([0, 1])
        arrs.append([1, 1])
        arrs.append([1, 1])
        arrs.append([10, 0])
        arrs.append([0, 10])
        arrs.append([110, 10])
        arrs.append([-10, 10])
        labels = []
        labels.append('false')
        labels.append('false')
        labels.append('false')
        labels.append('false')
        labels.append('true')
        labels.append('true')
        labels.append('true')
        labels.append('true')
        ann = Ann(arrs, labels, n_h=0)
        ann.train()
        ann.validate_train()
        # Check to see if train_accuracy is over 90%
        self.assertTrue(ann.train_accuracy() > 0.9)
示例#25
0
 def test_4(self):
     # Gradient checking (check that a numerical approximation of the gradient is (almost) equal to our backpropagation derivation)#
      
     # First data-set with one example
     arrs = []
     labels = []
     arrs.append([1, 2, 4, 5, 5, 5])
     labels.append('cat')
     ann = Ann(arrs, labels, n_h=10)  # Create Ann with these train_examples and labels
     J = ann.backward(ann.train_examples[0].arr, ann.train_examples[0].y)
     T_original = copy.deepcopy(ann.Thetas)
      
     for l in range(0, ann.L - 1):
         shape_J = J[l].shape
         eps = 0.0001  # epsilon for a numerical approximation of the gradient
         for i in range(0, shape_J[0]):
             for j in range(0, shape_J[1]):
                 T_e = np.zeros(shape_J)  # Matrix of zeros
                 T_e[i][j] = eps
                 ann.Thetas[l] = T_original[l] + T_e
                 cost_e = ann.cost()  # Cost at Theta + eps
                 ann.Thetas[l] = T_original[l] - T_e
                 cost_minus_e = ann.cost()  # Cost at Theta - eps
                 P = (cost_e - cost_minus_e) / (2 * eps)  # Numerical approximation
                 J_ij = J[l].item(i, j)  # Backpropagation derivation
                  
                 # print(P, '\t', J_ij, '\t', abs(P - J_ij), (l, i, j))
                  
                 # if (P < 0 and J_ij > 0 or P > 0 and J_ij < 0):
                 #    self.fail()
                  
                 self.assertAlmostEqual(P, J_ij, delta=0.001)
                 ann.Thetas = copy.deepcopy(T_original)
      
     # Second data-set with several train_examples
     arrs = []
     labels = []
     classes = ('cat', 'dog')
     for m in range(0, 100):
         arr = [random.random() for x in range(0, 20)]
         label = classes[random.random() > 0.5]
         arrs.append(arr)
         labels.append(label)
     ann = Ann(arrs, labels, n_h=2)  # Create Ann with these train_examples and labels
     # L-1 matrices of partial derivatives for first example
     J = ann.backward_batch()
     T_original = copy.deepcopy(ann.Thetas)
      
     for l in range(0, ann.L - 1):
         shape_J = J[l].shape
         eps = 0.0001  # epsilon for a numerical approximation of the gradient
         a = random.sample(range(0, shape_J[0]), 2)
         b = random.sample(range(0, shape_J[1]), 2)
         for i in a:
             for j in b:
                 T_e = np.zeros(shape_J)  # Matrix of zeros
                 T_e[i][j] = eps
                 ann.Thetas[l] = T_original[l] + T_e
                 cost_e = ann.cost()  # Cost at Theta + eps
                 ann.Thetas[l] = T_original[l] - T_e
                 cost_minus_e = ann.cost()  # Cost at Theta - eps
                 P = (cost_e - cost_minus_e) / (2 * eps)  # Numerical approximation
                 J_ij = J[l].item(i, j)  # Backpropagation derivation
                  
                 self.assertAlmostEqual(P, J_ij, delta=0.001)
                 ann.Thetas = copy.deepcopy(T_original)
示例#26
0
def demo_helper():
    init_logger('debug')
    
    print('\t** Learn the AND function using 0 hidden layers (logistic regression) **')
    arrs = []
    labels = []
    (arrs.append([0, 0]), labels.append('false')) 
    (arrs.append([0, 1]), labels.append('true'))
    (arrs.append([1, 0]), labels.append('true'))
    (arrs.append([1, 1]), labels.append('true'))
    num_hidden_layers = 0
    ann = Ann(arrs, labels, n_h=num_hidden_layers)
    ann.train()
    if (ann.validate_train() == 1):
        print('\t** The AND function was learned correctly using 0 hidden layers **\n')
    else:
        print('\t** ERROR (when learning the AND function using 0 hidden layers **\n')
    
    print('\t** Learn the AND function using 1 hidden layer **')
    arrs = []
    labels = []
    (arrs.append([0, 0]), labels.append('false')) 
    (arrs.append([0, 1]), labels.append('true'))
    (arrs.append([1, 0]), labels.append('true'))
    (arrs.append([1, 1]), labels.append('true'))
    num_hidden_layers = 1
    ann = Ann(arrs, labels, n_h=num_hidden_layers)
    ann.train()
    if (ann.validate_train() == 1):
        print('\t** The AND function was learned correctly using 1 hidden layers **\n')
    else:
        print('\t** ERROR (when learning the AND function using 1 hidden layers **\n')
        

    print('\t** Learn the XOR function using 0 hidden layers (logistic regression) **')
    arrs = []
    labels = []
    (arrs.append([0, 0]), labels.append('false')) 
    (arrs.append([0, 1]), labels.append('true'))
    (arrs.append([1, 0]), labels.append('true'))
    (arrs.append([1, 1]), labels.append('false'))
    num_hidden_layers = 0
    ann = Ann(arrs, labels, n_h=num_hidden_layers)
    ann.train()
    if (ann.validate_train() != 1):
        print('\t** The XOR function was not learned correctly (as expected) because logistic regression (0 hidden layers) \n' + 
              'cannot create a boundary through a non-linearly separable data-set (which the XOR function is)**\n')
    else:
        print('\t** ERROR (when learning the XOR function using 0 hidden layers **\n')
    
    print('\t** Learn the XOR function using 1 hidden layer **')
    arrs = []
    labels = []
    (arrs.append([0, 0]), labels.append('false')) 
    (arrs.append([0, 1]), labels.append('true'))
    (arrs.append([1, 0]), labels.append('true'))
    (arrs.append([1, 1]), labels.append('false'))
    num_hidden_layers = 1
    ann = Ann(arrs, labels, n_h=num_hidden_layers)
    ann.train()
    if (ann.validate_train() == 1):
        print('\t** The XOR function was learned correctly using 1 hidden layers **\n')
    else:
        print('\t** ERROR (when learning the XOR function using 1 hidden layers **\n')
    def test_4(self):
        # Gradient checking (check that a numerical approximation of the gradient is (almost) equal to our backpropagation derivation)#

        # First data-set with one example
        arrs = []
        labels = []
        arrs.append([1, 2, 4, 5, 5, 5])
        labels.append('cat')
        ann = Ann(arrs, labels,
                  n_h=10)  # Create Ann with these train_examples and labels
        J = ann.backward(ann.train_examples[0].arr, ann.train_examples[0].y)
        T_original = copy.deepcopy(ann.Thetas)

        for l in range(0, ann.L - 1):
            shape_J = J[l].shape
            eps = 0.0001  # epsilon for a numerical approximation of the gradient
            for i in range(0, shape_J[0]):
                for j in range(0, shape_J[1]):
                    T_e = np.zeros(shape_J)  # Matrix of zeros
                    T_e[i][j] = eps
                    ann.Thetas[l] = T_original[l] + T_e
                    cost_e = ann.cost()  # Cost at Theta + eps
                    ann.Thetas[l] = T_original[l] - T_e
                    cost_minus_e = ann.cost()  # Cost at Theta - eps
                    P = (cost_e - cost_minus_e) / (2 * eps
                                                   )  # Numerical approximation
                    J_ij = J[l].item(i, j)  # Backpropagation derivation

                    # print(P, '\t', J_ij, '\t', abs(P - J_ij), (l, i, j))

                    # if (P < 0 and J_ij > 0 or P > 0 and J_ij < 0):
                    #    self.fail()

                    self.assertAlmostEqual(P, J_ij, delta=0.001)
                    ann.Thetas = copy.deepcopy(T_original)

        # Second data-set with several train_examples
        arrs = []
        labels = []
        classes = ('cat', 'dog')
        for m in range(0, 100):
            arr = [random.random() for x in range(0, 20)]
            label = classes[random.random() > 0.5]
            arrs.append(arr)
            labels.append(label)
        ann = Ann(arrs, labels,
                  n_h=2)  # Create Ann with these train_examples and labels
        # L-1 matrices of partial derivatives for first example
        J = ann.backward_batch()
        T_original = copy.deepcopy(ann.Thetas)

        for l in range(0, ann.L - 1):
            shape_J = J[l].shape
            eps = 0.0001  # epsilon for a numerical approximation of the gradient
            a = random.sample(range(0, shape_J[0]), 2)
            b = random.sample(range(0, shape_J[1]), 2)
            for i in a:
                for j in b:
                    T_e = np.zeros(shape_J)  # Matrix of zeros
                    T_e[i][j] = eps
                    ann.Thetas[l] = T_original[l] + T_e
                    cost_e = ann.cost()  # Cost at Theta + eps
                    ann.Thetas[l] = T_original[l] - T_e
                    cost_minus_e = ann.cost()  # Cost at Theta - eps
                    P = (cost_e - cost_minus_e) / (2 * eps
                                                   )  # Numerical approximation
                    J_ij = J[l].item(i, j)  # Backpropagation derivation

                    self.assertAlmostEqual(P, J_ij, delta=0.001)
                    ann.Thetas = copy.deepcopy(T_original)
示例#28
0
    def test_8(self):
        # First test#
        # 1 hidden layer cost test with regularization#       
        x1 = [1, 2, 3, 4]  # Array as first example
        y1 = 'yes'
        arrs = []
        labels = []
        arrs.append(x1)
        labels.append(y1)
        ann1 = Ann(arrs, labels, n_h=1)  # Create this architecture
         
        # Custom Thetas weights#
        M1 = np.matrix([[1, -1, 0.5, -0.3, 2],
                       [1, -1, 0.5, -0.3, 2],
                       [1, -1, 0.5, -0.3, 2],
                       [1, -1, 0.5, -0.3, 2]])
        M2 = np.matrix([[1, 1, -1, 0.5, -1]])
        ann1.Thetas[0] = M1
        ann1.Thetas[1] = M2
        cost_0 = ann1.cost()  # lam equals 0
        cost_1 = ann1.cost(lam=1)  # lam equals 1
        self.assertTrue(cost_1 > cost_0)  # Cost with regularization penalty is always higher than without regularization        
 
        # Gradient checking (now with regularization)#
        # Medium size data-set with several train_examples
        lam_test = 1  # Regularization parameter
        arrs = []
        labels = []
        classes = ('cat', 'dog')
        for m in range(0, 100):
            arr = [random.random() for x in range(0, 40)]
            label = classes[random.random() > 0.5]
            arrs.append(arr)
            labels.append(label)
        ann = Ann(arrs, labels, n_h=2)  # Create Ann with these train_examples and labels
        # L-1 matrices of partial derivatives for first example
        J = ann.backward_batch(lam=lam_test, batch_size=1)  # Use full-batch for gradient descent
        T_original = copy.deepcopy(ann.Thetas)
         
        for l in range(0, ann.L - 1):
            shape_J = J[l].shape
            eps = 0.0001  # epsilon for a numerical approximation of the gradient
            a = random.sample(range(0, shape_J[0]), 2)
            b = random.sample(range(0, shape_J[1]), 2)
            for i in a:
                for j in b:
                    T_e = np.zeros(shape_J)  # Matrix of zeros
                    T_e[i][j] = eps
                    ann.Thetas[l] = T_original[l] + T_e
                    cost_e = ann.cost(lam=lam_test)  # Cost at Theta + eps
                    ann.Thetas[l] = T_original[l] - T_e
                    cost_minus_e = ann.cost(lam=lam_test)  # Cost at Theta - eps
                    P = (cost_e - cost_minus_e) / (2 * eps)  # Numerical approximation
                    J_ij = J[l].item(i, j)  # Backpropagation derivation
                     
                    # print(P, '\t', J_ij, '\t', abs(P - J_ij), (l, i, j))
                     
                    # if (P < 0 and J_ij > 0 or P > 0 and J_ij < 0):
                    #    self.fail()
                     
                    self.assertAlmostEqual(P, J_ij, delta=0.001)
                    ann.Thetas = copy.deepcopy(T_original)
示例#29
0
def main():
    # An array of all text files
    dir = '../library/books/'
    
    # Using pickle so I don't keep re-reading these books
    print('\n\nReading books..')
    books = []
    if (os.path.exists(dir + '../my_books')):
        books = pickle.load(open(dir + '../my_books', 'rb'))
    else:
        # Just use the first 10 books
        file_names = [name for name in os.listdir(dir)][0:10]
        for file_name in file_names:
            m = re.search('(.*?)_(.*?)\.txt', file_name)
            # Get the author from the text file name
            author = re.sub(r'([A-Z])', r' \1', m.group(1)).strip()
            # Get the title from the text file name
            title = m.group(2).strip()
            f = codecs.open('../library/books/' + file_name, 'r', encoding='utf-8', errors='ignore')
            # print(author + ' ' + title)
            lines = f.readlines()
            book = Book(author, title, lines)
            books.append(book)
        
        pickle.dump(books, open(dir + '../my_books', 'wb'))
    for book in books:
        print(book.title + ' by ' + book.author + '\t\t has ' + str(len(book.sentences)) + ' sentences.')
        
    n = 2  # The size of our n-grams (we choose to use bi-grams)
    
    print('\n\nMaking a vocabulary of n-grams...')
    # Using pickle so I don't keep re-making a vocabulary
    n_gram_vocab = []
    if (os.path.exists(dir + '../my_n_grams')):
        n_gram_vocab = pickle.load(open(dir + '../my_n_grams', 'rb'))
    else:
        n_gram_vocab = {}  # Treated as a set (faster 'in' operation than list)
        for book in books:
            # print(book.author + ' ' + book.title)
            # print(len(n_gram_vocab))
            n_gram_vocab = add_to_n_gram_vocab(n_gram_vocab, book.sentences, n=n)
        
        # n_gram_vocab = OrderedDict(n_gram_vocab)  # Convert to an ordered list
        n_gram_vocab = list(n_gram_vocab.keys())  # Convert to an ordered list
        pickle.dump(n_gram_vocab, open(dir + '../my_n_grams', 'wb'))
        
    print('There are ' + str(len(n_gram_vocab)) + ' n-grams of size ' + str(n))
    
    print('\n\nBuilding a labeled data-set...')
    # We will do our training and testing on samples where a sample is a 5 sentence continuous text
    # Chunks are further broken down into a train and test sets by Ann
    # We look for the book with the smallest number of sentences and then get 50% of all of its 5-sentence chunks
    # For every other book, we randomly sample the same number of chunks (all labels have the same number of data points)
    
    arrs = []  # Holds vectorial representation of our 5-sentence chunks
    labels = []  # Holds the corresponding labels (author + title) of our chunks
    
    chunk_length = 5
    percentage = 0.5 
    
    # Get minimum number of sentences across all our books
    min_num_sentences = -1
    for book in books:
        if (len(book.sentences) < min_num_sentences or min_num_sentences == -1):
            min_num_sentences = len(book.sentences)
        
    for book in books:
        # We can't start a chunk at the last 4 sentences
        num_chunks = min_num_sentences - chunk_length + 1
        this_num_sentences = len(book.sentences) - chunk_length + 1
        num_samples = int(math.floor(num_chunks * percentage))
        # Randomly pick 50% of all 5-sentence chunks
        samples = random.sample(range(0, this_num_sentences), num_samples)
        
        label = book.title + ' by ' + book.author
        print(label)
        # Convert our sampled 5-sentence chunks into vectors
        for sample in samples:
            # print(sample)
            # Take some 5-sentence chunk
            chunk = book.sentences[sample:sample + chunk_length + 1]
            chunk = ''.join(str(elem + ' ') for elem in chunk)
            v = sen_2_vec(chunk, n_gram_vocab, n=n)
            arrs.append(v)
            labels.append(label)
            
    print('\n\nTraining logistic regression classifier using Ann...')
    ann = Ann(arrs, labels, n_h=0)  # n_h=0 means we are using 0 hidden layers
    ann.train(lam=100)
    
    print('\n\nFinding the top 5 most distinguishing bi-grams...')
    for k in range(0, len(books)):  # Number of classes
        v = ann.Thetas[0][k, :].tolist()[0]
        s = sorted((e, i) for i, e in enumerate(v))
        s.reverse()
        print(books[k].title + ' by ' + books[k].author)
        for i in range(0, 5):
            print(n_gram_vocab[s[i][1]])
                for x in range(0, 2)
            ]
            label = 'yes'  # Note: this is artificially misclassified
            arrs.append(arr)
            labels.append(label)

        ann = Ann(arrs, labels, n_h=2)
        (models, test_accuracies, test_costs) = ann.train()

        best_test_accuracy = 0
        best_i = -1
        for i in range(0, len(test_accuracies)):
            if (test_accuracies[i] > best_test_accuracy):
                best_test_accuracy = test_accuracies[i]
                best_i = i

        if (best_i > -1):
            model_name = models[i].name
            directory = '../Ann-models'
            path_to_file = directory + '/' + model_name
            if not os.path.exists(directory):
                os.makedirs(directory)
            pickle.dump(models[i], open(path_to_file, 'wb'))
        else:
            logger.error('Error!')


if __name__ == "__main__":
    Ann.init_logger('debug')
    unittest.main()
    def test_1(self):
        # Test for Ann Architecture#

        # First architecture test#
        n_i1 = 4  # Number of input neurons
        n_h1 = 2  # Number of hidden layers
        n_o1 = 1  # Number of output neurons

        ann1 = Ann(n_i=4, n_h=2, n_o=1)  # Create this architecture
        self.assertEqual(n_i1, ann1.n_i)
        self.assertEqual(n_h1, ann1.n_h)
        self.assertEqual(n_o1, ann1.n_o)

        self.assertEqual(ann1.s, [5, 5, 5, 2])
        self.assertEqual(len(ann1.Thetas), 3)
        self.assertEqual(ann1.Thetas[0].shape, (4, 5))
        self.assertEqual(ann1.Thetas[1].shape, (4, 5))
        self.assertEqual(ann1.Thetas[2].shape, (1, 5))

        # Second architecture test#
        n_i2 = 10  # Number of input neurons
        n_h2 = 1  # Number of hidden layers
        n_o2 = 2  # Number of output neurons

        ann2 = Ann(n_i=n_i2, n_h=n_h2, n_o=n_o2)  # Create this architecture
        self.assertEqual(n_i2, ann2.n_i)
        self.assertEqual(n_h2, ann2.n_h)
        self.assertEqual(n_o2, ann2.n_o)

        self.assertEqual(ann2.s, [11, 11, 3])
        self.assertEqual(len(ann2.Thetas), 2)
        self.assertEqual(ann2.Thetas[0].shape, (10, 11))
        self.assertEqual(ann2.Thetas[1].shape, (2, 11))

        # Third architecture test#
        n_i3 = 100  # Number of input neurons
        n_h3 = 0  # Number of hidden layers
        n_o3 = 10  # Number of output neurons

        ann3 = Ann(n_i=n_i3, n_h=n_h3, n_o=n_o3)  # Create this architecture
        self.assertEqual(n_i3, ann3.n_i)
        self.assertEqual(n_h3, ann3.n_h)
        self.assertEqual(n_o3, ann3.n_o)

        self.assertEqual(ann3.s, [101, 11])
        self.assertEqual(len(ann3.Thetas), 1)
        self.assertEqual(ann3.Thetas[0].shape, (10, 101))

        n_i4 = 1500  # Number of input neurons
        n_h4 = 3  # Number of hidden layers
        n_o4 = 6  # Number of output neurons

        # Fourth architecture test#
        ann4 = Ann(n_i=n_i4, n_h=n_h4, n_o=n_o4)  # Create this architecture
        self.assertEqual(n_i4, ann4.n_i)
        self.assertEqual(n_h4, ann4.n_h)
        self.assertEqual(n_o4, ann4.n_o)

        self.assertEqual(ann4.s, [1501, 31 + 1, 31 + 1, 31 + 1, 6 + 1])
        self.assertEqual(len(ann4.Thetas), 4)
        self.assertEqual(ann4.Thetas[0].shape, (31, 1501))
        self.assertEqual(ann4.Thetas[1].shape, (31, 32))
        self.assertEqual(ann4.Thetas[2].shape, (31, 32))
        self.assertEqual(ann4.Thetas[3].shape, (6, 32))

        # Fourth (arbitrary) architecture test#
        s = [3, 2]
        n_i = 4
        n_h = len(s)
        n_o = 2
        ann1 = Ann(s=s, n_i=n_i, n_h=n_h, n_o=n_o)  # Create this architecture
        self.assertEqual(n_i, ann1.n_i)
        self.assertEqual(n_h, ann1.n_h)
        self.assertEqual(n_o, ann1.n_o)

        self.assertEqual(ann1.s, [5, 3, 2, 3])
        self.assertEqual(len(ann1.Thetas), 3)
        self.assertEqual(ann1.Thetas[0].shape, (2, 5))
        self.assertEqual(ann1.Thetas[1].shape, (1, 3))
        self.assertEqual(ann1.Thetas[2].shape, (2, 2))