示例#1
0
def save_roisubset(trkfile, roislist, roisexcel, labelmask):
    #loads trk file, list of rois, the full correspondance of structure => label and the label mask, and saves the
    # tracts traversing each region

    trkdata = load_trk(trkfile, 'same')
    trkdata.to_vox()
    if hasattr(trkdata, 'space_attribute'):
        header = trkdata.space_attribute
    elif hasattr(trkdata, 'space_attributes'):
        header = trkdata.space_attributes
    trkstreamlines = trkdata.streamlines
    import pandas as pd
    df = pd.read_excel(roisexcel, sheet_name='Sheet1')
    df['Structure'] = df['Structure'].str.lower()

    for rois in roislist:

        labelslist = []
        for roi in rois:
            rslt_df = df.loc[df['Structure'] == roi.lower()]
            if rois[0].lower() == "wholebrain" or rois[0].lower() == "brain":
                labelslist = None
            else:
                labelslist = np.concatenate((labelslist, np.array(rslt_df.index2)))
        print(labelslist)
        if isempty(labelslist) and roi.lower() != "wholebrain" and roi.lower() != "brain":
            txt = "Warning: Unrecognized roi, will take whole brain as ROI. The roi specified was: " + roi
            print(txt)

        if isempty(labelslist):
            if labelmask is None:
                roimask = (fdwi_data[:, :, :, 0] > 0)
            else:
                roimask = np.where(labelmask == 0, False, True)
        else:
            if labelmask is None:
                raise ("File not found error: labels requested but labels file could not be found at "+dwipath+ " for subject " + subject)
            roimask = np.zeros(np.shape(labelmask),dtype=int)
            for label in labelslist:
                roimask = roimask + (labelmask == label)

        trkroipath = trkfile.replace(".trk", "_" + rois + ".trk")
        if not os.path.exists(trkroipath):
            affinetemp = np.eye(4)
            trkroistreamlines = target(trkstreamlines, affinetemp, roimask, include=True, strict="longstring")
            trkroistreamlines = Streamlines(trkroistreamlines)
            myheader = create_tractogram_header(trkroipath, *header)
            roi_sl = lambda: (s for s in trkroistreamlines)
            tract_save.save_trk_heavy_duty(trkroipath, streamlines=roi_sl,
                                           affine=header[0], header=myheader)
示例#2
0
    roistring = roistring #+ "_"
#str_identifier = '_stepsize_' + str(stepsize) + saved_streamlines+ roistring
str_identifier = '_stepsize_' + str(stepsize) + classifiertype + roistring + saved_streamlines

labelslist=[]
if targetrois and (targetrois[0]!="wholebrain" or len(targetrois) > 1):
    df = pd.read_excel(atlas_legends, sheet_name='Sheet1')
    df['Structure'] = df['Structure'].str.lower()
    for roi in targetrois:
        rslt_df = df.loc[df['Structure'] == roi.lower()]
        if roi.lower() == "wholebrain" or roi.lower() == "brain":
            labelslist=None
        else:
            labelslist=np.concatenate((labelslist, np.array(rslt_df.index)))
print(labelslist)
if isempty(labelslist) and roi.lower() != "wholebrain" and roi.lower() != "brain":
    txt = "Warning: Unrecognized roi, will take whole brain as ROI. The roi specified was: " + roi
    print(txt)

bvec_orient=[1,2,-3]

tall = time()
tract_results = []


if verbose:
    txt=("Process running with % d max processes available on % d subjects with % d subjects in parallel each using % d processes"
      % (mp.cpu_count(), np.size(l), subject_processes, function_processes))
    print(txt)
    send_mail(txt,subject="Main process start msg ")
示例#3
0
def save_roisubset(streamlines, roislist, roisexcel, labelmask, stringstep, ratios, trkpath, subject, affine, header):
    
    #atlas_legends = BIGGUS_DISKUS + "/atlases/CHASSSYMM3AtlasLegends.xlsx"
    
    df = pd.read_excel(roisexcel, sheet_name='Sheet1')
    df['Structure'] = df['Structure'].str.lower()    
    
    for rois in roislist:
        if len(rois)==1:
            roiname = "_" + rois[0] + "_"
        elif len(rois)>1:
            roiname="_"
            for roi in rois:
                roiname = roiname + roi[0:4]
            roiname = roiname + "_"    
            
        labelslist=[]#fimbria

        for roi in rois:
            rslt_df = df.loc[df['Structure'] == roi.lower()]
            if roi.lower() == "wholebrain" or roi.lower() == "brain":
                labelslist=None
            else:
                labelslist=np.concatenate((labelslist,np.array(rslt_df.index2)))

        if isempty(labelslist) and roi.lower() != "wholebrain" and roi.lower() != "brain":
            txt = "Warning: Unrecognized roi, will take whole brain as ROI. The roi specified was: " + roi
            print(txt)

#bvec_orient=[-2,1,3]    
    
        if isempty(labelslist):
            roimask = np.where(labelmask == 0, False, True)
        else:
            if labelmask is None:
                raise ("Bad label data, could not define ROI for streams")
            roimask = np.zeros(np.shape(labelmask),dtype=int)
            for label in labelslist:
                roimask = roimask + (labelmask == label)
        
        if not isempty(labelslist):
            trkroipath = trkpath + '/' + subject + roiname + "_stepsize_" + stringstep + '.trk'
            if not os.path.exists(trkroipath):
                affinetemp=np.eye(4)
                trkstreamlines = target(streamlines, affinetemp, roimask, include=True, strict="longstring")
                trkstreamlines = Streamlines(trkstreamlines)
                myheader = create_tractogram_header(trkroipath, *header)
                roi_sl = lambda: (s for s in trkstreamlines)
                save_trk_heavy_duty(trkroipath, streamlines=roi_sl,
                            affine=affine, header=myheader)
            else:
                trkdata = load_trk(trkroipath, 'same')
                trkdata.to_vox()
                if hasattr(trkdata, 'space_attribute'):
                    header = trkdata.space_attribute
                elif hasattr(trkdata, 'space_attributes'):
                    header = trkdata.space_attributes
                trkstreamlines = trkdata.streamlines
                
        for ratio in ratios:
            if ratio != 1:
                trkroiminipath = trkpath + '/' + subject + '_ratio_' + ratios + roiname + "_stepsize_" + stringstep + '.trk'
                if not os.path.exists(trkroiminipath):
                    ministream = []
                    for idx, stream in enumerate(trkstreamlines):
                        if (idx % ratio) == 0:
                            ministream.append(stream)
                    trkstreamlines = ministream
                    myheader = create_tractogram_header(trkminipath, *header)
                    ratioed_roi_sl_gen = lambda: (s for s in trkstreamlines)
                    if allsave:
                        save_trk_heavy_duty(trkroiminipath, streamlines=ratioed_roi_sl_gen,
                                            affine=affine, header=myheader)
                else:
                    trkdata = load_trk(trkminipath, 'same')
                    trkdata.to_vox()
                    if hasattr(trkdata, 'space_attribute'):
                        header = trkdata.space_attribute
                    elif hasattr(trkdata, 'space_attributes'):
                        header = trkdata.space_attributes
                    trkstreamlines = trkdata.streamlines