output_file = "./results.txt" alpha, beta = 1., 1. lambdaF = 1. / 10. lambdaS = 1. / 10. lambdaG = 1. / 10. priors = { 'alpha': alpha, 'beta': beta, 'lambdaF': lambdaF, 'lambdaS': lambdaS, 'lambdaG': lambdaG } # Load in the CCLE EC50 dataset R, M = load_ccle(ic50=False) # Run the cross-validation framework #random.seed(1) #numpy.random.seed(1) nested_crossval = GreedySearchCrossValidation(classifier=bnmtf_gibbs_optimised, R=R, M=M, values_K=K_range, values_L=L_range, folds=no_folds, priors=priors, init_S=init_S, init_FG=init_FG, iterations=iterations, restarts=restarts,
'init_UV': 'exponential', 'expo_prior': 0.1 } K_range = [1, 2, 3] no_threads = 2 no_folds = 10 output_file = "./results.txt" files_nested_performances = [ "./fold_%s.txt" % fold for fold in range(1, no_folds + 1) ] # Construct the parameter search parameter_search = [{'K': K} for K in K_range] # Load in the CCLE IC50 dataset R, M = load_ccle(ic50=True) # Run the cross-validation framework #random.seed(42) #numpy.random.seed(9000) nested_crossval = MatrixNestedCrossValidation( method=NMF, X=R, M=M, K=no_folds, P=no_threads, parameter_search=parameter_search, train_config=train_config, file_performance=output_file, files_nested_performances=files_nested_performances) nested_crossval.run()