'iterations' : 3000, 'init_FG' : 'kmeans', 'init_S' : 'exponential', 'expo_prior' : 0.1 } K_range = [2,4,6,8,10] L_range = [2,4,6,8,10] P = 5 no_folds = 5 output_file = "./results.txt" files_nested_performances = ["./fold_%s.txt" % fold for fold in range(1,no_folds+1)] # Construct the parameter search parameter_search = [{'K':K,'L':L} for (K,L) in itertools.product(K_range,L_range)] # Load in the Sanger dataset (_,X_min,M,_,_,_,_) = load_Sanger(standardised=standardised) # Run the cross-validation framework random.seed(42) numpy.random.seed(9000) nested_crossval = MatrixCrossValidation( method=NMTF, X=X_min, M=M, K=no_folds, parameter_search=parameter_search, train_config=train_config, file_performance=output_file ) nested_crossval.run()
output_file = "./results_TEST.txt" alpha, beta = 1., 1. lambdaF = 1. / 10. lambdaS = 1. / 10. lambdaG = 1. / 10. priors = { 'alpha': alpha, 'beta': beta, 'lambdaF': lambdaF, 'lambdaS': lambdaS, 'lambdaG': lambdaG } # Load in the Sanger dataset (_, X_min, M, _, _, _, _) = load_Sanger(standardised=standardised) # Run the cross-validation framework random.seed(42) numpy.random.seed(9000) nested_crossval = GreedySearchCrossValidation(classifier=bnmtf_vb_optimised, R=X_min, M=M, values_K=K_range, values_L=L_range, folds=no_folds, priors=priors, init_S=init_S, init_FG=init_FG, iterations=iterations, restarts=restarts,
standardised = False #standardised Sanger or unstandardised repeats = 10 iterations = 500 init_UV = 'random' I, J, K = 622,139,25 alpha, beta = 1., 1. #1., 1. lambdaU = numpy.ones((I,K))/10. lambdaV = numpy.ones((J,K))/10. priors = { 'alpha':alpha, 'beta':beta, 'lambdaU':lambdaU, 'lambdaV':lambdaV } # Load in data (_,R,M,_,_,_,_) = load_Sanger(standardised=standardised) # Run the VB algorithm, <repeats> times times_repeats = [] performances_repeats = [] for i in range(0,repeats): # Set all the seeds numpy.random.seed(0) # Run the classifier BNMF = bnmf_gibbs_optimised(R,M,K,priors) BNMF.initialise(init_UV) BNMF.run(iterations) # Extract the performances and timestamps across all iterations
import numpy, random, scipy, matplotlib.pyplot as plt ########## standardised = False #standardised Sanger or unstandardised repeats = 10 iterations = 1000 I, J, K = 622, 139, 25 init_UV = 'exponential' expo_prior = 1 / 10. # Load in data (_, R, M, _, _, _, _) = load_Sanger(standardised=standardised) # Run the VB algorithm, <repeats> times times_repeats = [] performances_repeats = [] for i in range(0, repeats): # Set all the seeds numpy.random.seed(0) # Run the classifier nmf = NMF(R, M, K) nmf.initialise(init_UV, expo_prior) nmf.run(iterations) # Extract the performances and timestamps across all iterations times_repeats.append(nmf.all_times)