L_range = [1, 2, 3] no_threads = 2 no_folds = 10 output_file = "./results.txt" files_nested_performances = [ "./fold_%s.txt" % fold for fold in range(1, no_folds + 1) ] # Construct the parameter search parameter_search = [{ 'K': K, 'L': L } for (K, L) in itertools.product(K_range, L_range)] # Load in the CCLE IC50 dataset R, M = load_ccle(ic50=True) # Run the cross-validation framework #random.seed(42) #numpy.random.seed(9000) nested_crossval = MatrixNestedCrossValidation( method=NMTF, X=R, M=M, K=no_folds, P=no_threads, parameter_search=parameter_search, train_config=train_config, file_performance=output_file, files_nested_performances=files_nested_performances) nested_crossval.run()
init_UV = 'random' K_range = [1, 2, 3] no_folds = 10 restarts = 1 quality_metric = 'AIC' output_file = "./results.txt" alpha, beta = 1., 1. lambdaU = 1. / 10. lambdaV = 1. / 10. priors = {'alpha': alpha, 'beta': beta, 'lambdaU': lambdaU, 'lambdaV': lambdaV} # Load in the CCLE EC50 dataset R, M = load_ccle(ic50=False) # Run the cross-validation framework #random.seed(42) #numpy.random.seed(9000) nested_crossval = LineSearchCrossValidation(classifier=bnmf_vb_optimised, R=R, M=M, values_K=K_range, folds=no_folds, priors=priors, init_UV=init_UV, iterations=iterations, restarts=restarts, quality_metric=quality_metric, file_performance=output_file)