def __init__(self, urm, urm_t, icm, icm2, enable_dict, urm_test=None):
        self.urm = urm
        self.setEnables(enable_dict)

        if self.enableSVD:
            self.svd = SVDRecommender(urm, nf=385)

        if self.enableSLIM:
            logFile = open("SLIM_BPR_Cython.txt", "a")

            self.slim = SLIM_BPR_Cython(urm.getCSR(),
                                        recompile_cython=False,
                                        positive_threshold=0,
                                        URM_validation=urm_test.getCSR(),
                                        final_model_sparse_weights=True,
                                        train_with_sparse_weights=False)

            self.slim.fit(epochs=100,
                          validation_every_n=1,
                          logFile=logFile,
                          batch_size=5,
                          topK=200,
                          sgd_mode="adagrad",
                          learning_rate=0.075)

            self.slim_sim = self.slim.get_similarity()

        if self.enableLFM:
            # LightFM
            print("starting USER CF")
            self.lfm = LightFMRecommender()
            self.lfm.fit(urm, epochs=100)
            print("USER CF finished")

        # User based
        print("starting USER CF")
        self.cbu = CollaborativeFiltering()
        self.cbu.fit(urm_t, k=100, h=8, mode='user')
        print("USER CF finished")

        # Item based
        print("starting ITEM CF")
        self.cbi = CollaborativeFiltering()
        self.cbi.fit(urm, k=125, h=10, mode='item')
        print("ITEM CF finished")

        # Content based artist
        print("starting CBF")
        self.cbf = ContentBasedFiltering(icm, urm, k=25, shrinkage=100)
        self.cbf.fit()
        print("CBF finished")

        if self.enableCBF2:
            print("starting CBF2")
            self.cbf2 = ContentBasedFiltering(icm2, urm, k=25, shrinkage=100)
            self.cbf2.fit()
            print("CBF2 finished")
    def __init__(self, urm, icm, icm2):
        self.urm = urm

        # Content based 1
        self.cbf = ContentBasedFiltering(icm, urm, k=25, shrinkage=10)
        self.cbf.fit()
        print("CBF1 finished")

        # Content based 1
        self.cbf2 = ContentBasedFiltering(icm2, urm, k=25, shrinkage=10)
        self.cbf2.fit()
        print("CBF2 finished")

        # Item based
        self.cbi = CollaborativeFiltering()
        self.cbi.fit(urm, k=125, h=10, mode='item')
        print("Item CF finished")
示例#3
0
class PopulationHybrid():
    def __init__(self,
                 urm,
                 urm_t,
                 icm,
                 icm2,
                 enable_dict,
                 param_dict,
                 urm_test=None):
        self.urm = urm
        self.setEnables(enable_dict)

        self.group_1_params = param_dict.get('group_1_params')
        self.group_2_params = param_dict.get('group_2_params')
        self.group_1_2_TH = param_dict.get('group_1_2_TH')

        if self.enableSVD:
            self.svd = SVDRecommender(urm, nf=385)

        if self.enableSLIM:
            logFile = open("SLIM_BPR_Cython.txt", "a")

            self.slim = SLIM_BPR_Cython(urm.getCSR(),
                                        recompile_cython=False,
                                        positive_threshold=0,
                                        URM_validation=urm_test.getCSR(),
                                        final_model_sparse_weights=True,
                                        train_with_sparse_weights=False)

            self.slim.fit(epochs=200,
                          validation_every_n=1,
                          logFile=logFile,
                          batch_size=5,
                          topK=200,
                          sgd_mode="adagrad",
                          learning_rate=0.075)

            self.slim_sim = self.slim.get_similarity()

        # User based
        print("starting USER CF")
        self.cbu = CollaborativeFiltering()
        self.cbu.fit(urm_t, k=100, h=8, mode='user')
        print("USER CF finished")

        # Item based
        print("starting ITEM CF")
        self.cbi = CollaborativeFiltering()
        self.cbi.fit(urm, k=125, h=10, mode='item')
        print("ITEM CF finished")

        # Content based artist
        print("starting CBF")
        self.cbf = ContentBasedFiltering(icm, urm, k=25, shrinkage=0)
        self.cbf.fit()
        print("CBF finished")

        if self.enableCBF2:
            print("starting CBF2")
            self.cbf2 = ContentBasedFiltering(icm2, urm, k=25, shrinkage=0)
            self.cbf2.fit()
            print("CBF2 finished")

    def changeParams(self, param_dict):
        self.group_1_params = param_dict.get('group_1_params')
        self.group_2_params = param_dict.get('group_2_params')
        self.group_1_2_TH = param_dict.get('group_1_2_TH')

    def fit(self, weights_dict, method='rating_weight'):

        self.user_weight = weights_dict.get('user_weight', 0)
        self.item_weight = weights_dict.get('item_weight', 0)
        self.cbf_weight = weights_dict.get('cbf_weight', 0)
        self.cbf2_weight = weights_dict.get('cbf2_weight', 0)
        self.svd_weight = weights_dict.get('svd_weight', 0)
        self.slim_weight = weights_dict.get('slim_weight', 0)

        self.method = method

    def s_recommend(self, user, nRec=10):

        number_items = len(self.urm.extractTracksFromPlaylist(user))
        if number_items > self.group_1_2_TH:
            self.fit(self.group_2_params)
        else:
            self.fit(self.group_1_params)

        if self.method == 'item_weight':
            extra = 1

            recommended_items_user = self.cbu.s_recommend(user, nRec + extra)
            recommended_items_item = self.cbi.s_recommend(user, nRec + extra)
            recommended_items_cbf = self.cbf.s_recommend(user, nRec + extra)

            weighting_dict = {
                'user': (recommended_items_user, self.user_weight),
                'item': (recommended_items_item, self.item_weight),
                'cbf': (recommended_items_cbf, self.cbf_weight)
            }

            recommended_items_cbf2 = None
            if (self.enableCBF2):
                recommended_items_cbf2 = self.cbf2.s_recommend(
                    user, nRec + extra)
                weighting_dict['cbf2'] = (recommended_items_cbf2,
                                          self.cbf2_weight)

            recommended_items_svd = None
            if (self.enableSVD):
                recommended_items_svd = self.svd.s_recommend(
                    user, nRec + extra)
                weighting_dict['svd'] = (recommended_items_svd,
                                         self.svd_weight)

            recommended_items_slim = None
            if (self.enableSLIM):
                recommended_items_slim = self.slim.s_recommend(
                    user, nRec + extra)
                weighting_dict['slim'] = (recommended_items_slim,
                                          self.slim_weight)

            return self.item_weighter(weighting_dict, nRec, extra)

        elif self.method == 'rating_weight':

            norm_method = 'max'

            recommended_items_user = self.normalize_row(
                self.cbu.get_pred_row(user), method=norm_method)
            recommended_items_item = self.normalize_row(
                self.cbi.get_pred_row(user), method=norm_method)
            recommended_items_cbf = self.normalize_row(
                self.cbf.get_pred_row(user), method=norm_method)

            recommended_items_cbf2 = None
            if (self.enableCBF2):
                recommended_items_cbf2 = self.normalize_row(
                    self.cbf2.get_pred_row(user), method=norm_method)

            recommended_items_svd = None
            if (self.enableSVD):
                recommended_items_svd = self.normalize_row(
                    self.svd.get_pred_row(user), method=norm_method)

            recommended_items_slim = None
            if (self.enableSLIM):
                recommended_items_slim = self.normalize_row(
                    self.getSlimRow(user), method=norm_method)

            return self.predWeightRatingRows(
                user, nRec, recommended_items_user, recommended_items_item,
                recommended_items_cbf, recommended_items_cbf2,
                recommended_items_svd, recommended_items_slim)

        elif self.method == "hybrid":

            norm_method = 'max'
            extra = 1

            recommended_items_user = self.normalize_row(
                self.cbu.get_pred_row(user), method=norm_method)
            recommended_items_item = self.normalize_row(
                self.cbi.get_pred_row(user), method=norm_method)
            recommended_items_cbf = self.normalize_row(
                self.cbf.get_pred_row(user), method=norm_method)

            recommended_items_cbf2 = None
            if (self.enableCBF2):
                recommended_items_cbf2 = self.normalize_row(
                    self.cbf2.get_pred_row(user), method=norm_method)

            recommended_items_svd = None
            if (self.enableSVD):
                recommended_items_svd = self.normalize_row(
                    self.svd.get_pred_row(user), method=norm_method)

            recommended_items_slim = None
            if (self.enableSLIM):
                recommended_items_slim = self.normalize_row(
                    self.getSlimRow(user), method=norm_method)

            weighting_dict = {}

            weighting_dict['hybrid'] = (self.predWeightRatingRows(
                user, nRec + extra, recommended_items_user,
                recommended_items_item, recommended_items_cbf,
                recommended_items_cbf2, recommended_items_svd,
                recommended_items_slim), self.hybrid_ensemble_weight)

            recommended_items_slim = self.slim.s_recommend(user, nRec + extra)
            weighting_dict['slim'] = (recommended_items_slim,
                                      self.hybrid_slim_weight)

            return self.item_weighter(weighting_dict, nRec, extra)

        elif self.method == 'switch':

            if len(self.urm.extractTracksFromPlaylist(user)) < switchTH:
                # enough recommendations, use user
                return self.cbu.s_recommend(user, nRec=nRec)
            else:
                # not enough recommendations, use item
                return self.cbi.s_recommend(user, nRec=nRec)

        else:
            raise ValueError('Not a valid hybrid method')

    def m_recommend(self, user_ids, nRec=10):
        results = []
        for uid in user_ids:
            results.append(self.s_recommend(uid, nRec))
        return results

    def item_weighter(self, tupleDict, nRec, extra):

        # initialize a dict with recommended items as keys and value zero
        result = {}
        for tuple in tupleDict.values():

            items = tuple[0]

            for i in range(nRec + extra):
                result[str(items[i])] = 0

        # assign a score based on position

        for tuple in tupleDict.values():

            items = tuple[0]
            weight = tuple[1]

            for i in range(nRec + extra):
                result[str(items[i])] += (nRec + extra - i) * weight

        # sort the dict
        sorted_results = sorted(result.items(), key=itemgetter(1))
        rec_items = [x[0] for x in sorted_results]

        # flip to order by decreasing order
        rec_items = rec_items[::-1]

        # return only the topN recommendations
        return np.array(rec_items[0:nRec]).astype(int)

    def predWeightRatingRows(self, user, nRec, recommended_items_user,
                             recommended_items_item, recommended_items_cbf,
                             recommended_items_cbf2, recommended_items_svd,
                             recommended_items_slim):


        pred_row_sparse = recommended_items_user * self.user_weight + recommended_items_item * self.item_weight \
                    + recommended_items_cbf * self.cbf_weight

        if self.enableSLIM and self.method != "hybrid":
            pred_row_sparse = pred_row_sparse + self.slim_weight * recommended_items_slim

        if self.enableCBF2:
            pred_row_sparse = pred_row_sparse + self.cbf2_weight * recommended_items_cbf2

        # needs to be before svd because svd output is dense
        pred_row = np.array(pred_row_sparse.todense()).squeeze()

        if self.enableSVD:
            pred_row = pred_row + self.svd_weight * recommended_items_svd

        ranking = np.argsort(-pred_row)
        recommended_items = self._filter_seen(user, ranking)

        return recommended_items[0:nRec]

    def _filter_seen(self, user_id, ranking):
        seen = self.urm.extractTracksFromPlaylist(user_id)
        unseen_mask = np.in1d(ranking, seen, assume_unique=True, invert=True)
        return ranking[unseen_mask]

    def getSlimRow(self, user):
        return self.urm.getCSR().getrow(user) * self.slim_sim

    def setEnables(self, enable_dict):
        self.enableSVD = enable_dict.get('enableSVD')
        self.enableSLIM = enable_dict.get('enableSLIM')
        self.enableCBF2 = enable_dict.get('enableCBF2')

    def normalize_row(self, recommended_items, method):
        if method == 'max':
            norm_factor = recommended_items.max()
            if norm_factor == 0: norm_factor = 1
            return recommended_items / norm_factor

        elif method == 'sum':
            norm_factor = recommended_items.sum()
            if norm_factor == 0: norm_factor = 1
            return recommended_items / norm_factor

        else:
            raise ValueError('Not a valid normalization method')
class IIHybridRecommender():

    def __init__(self, urm, icm, icm2):
        self.urm = urm

        # Content based 1
        self.cbf = ContentBasedFiltering(icm, urm, k=25, shrinkage=10)
        self.cbf.fit()
        print("CBF1 finished")

        # Content based 1
        self.cbf2 = ContentBasedFiltering(icm2, urm, k=25, shrinkage=10)
        self.cbf2.fit()
        print("CBF2 finished")

        # Item based
        self.cbi = CollaborativeFiltering()
        self.cbi.fit(urm, k=125, h=10, mode='item')
        print("Item CF finished")


    def fit(self, item_weight, cbf1_weight, cbf2_weight):

        print("Building hybrid model")
        hybrid_similarity = self.mix_similarity_rows(item_weight, cbf1_weight, cbf2_weight)
        print("Weighted similarity finished for Item-Item Hybrid")
        #Computing predictions
        self.sparse_pred_urm = self.urm.getCSR().dot(hybrid_similarity)

        print("Pred R finished for Item-Item Hybrid")


    def mix_similarity_matrices(self, item_weight, cbf1_weight, cbf2_weight):

        hybrid_sim_matrix = item_weight * self.cbi.cosineSimilarityMatrix + cbf1_weight * self.cbf.W_sparse \
                            +cbf2_weight * self.cbf2.W_sparse
        return hybrid_sim_matrix



    def mix_similarity_rows(self, item_weight, cbf1_weight, cbf2_weight):

        items = self.cbi.cosineSimilarityMatrix.shape[0]

        norm_method ="max"
        #initialize hybrid matrix
        cbi_row = self.normalize_row(self.cbi.cosineSimilarityMatrix.getrow(0),norm_method)
        cbf1_row = self.normalize_row(self.cbf.W_sparse.getrow(0), norm_method)
        cbf2_row = self.normalize_row(self.cbf2.W_sparse.getrow(0), norm_method)
        hybrid_row = cbi_row + cbf1_row + cbf2_row

        self.weighted_sim_matrix = hybrid_row
        #fill the entire hybrid matrix

        for item in range(1, items):
            cbi_row = self.cbi.cosineSimilarityMatrix.getrow(item)
            cbf1_row = self.cbf.W_sparse.getrow(item)
            cbf2_row = self.cbf2.W_sparse.getrow(item)

            cbi_row = self.normalize_row(cbi_row, norm_method)
            cbf1_row = self.normalize_row(cbf1_row, norm_method)
            cbf2_row = self.normalize_row(cbf2_row, norm_method)


            """"
            item_popularity = len(self.urm.extractPlaylistsFromTrack(item))
            cbi_extra_weight = 0
            
            if item_popularity < 5:
                cbi_extra_weight = - 0.1
            elif item_popularity > 300:
                cbi_extra_weight = 0.1 + item_popularity/1000"""

            hybrid_row = item_weight * cbi_row + cbf1_weight * cbf1_row + cbf2_weight * cbf2_row
            #0.8 , 0.3 0.2

            self.weighted_sim_matrix = sps.vstack([self.weighted_sim_matrix, hybrid_row], "csr")

        return self.weighted_sim_matrix


    def s_recommend(self, u, nRec=10):

        pred_row_sparse = self.get_pred_row(u)
        pred_row = np.array(pred_row_sparse.todense()).squeeze()

        ranking = np.argsort(-pred_row)
        recommended_items = self._filter_seen(u, ranking)

        return recommended_items[0:nRec]

    def get_pred_row(self, u):
        return self.sparse_pred_urm.getrow(u)

    def m_recommend(self, user_ids, nRec=10):

        results = []
        for uid in user_ids:
            results.append(self.s_recommend(uid, nRec))
        return results

    def _filter_seen(self, user_id, ranking):
        user_profile = self.urm.getCSR()[user_id]
        seen = user_profile.indices
        unseen_mask = np.in1d(ranking, seen, assume_unique=True, invert=True)
        return ranking[unseen_mask]

    def normalize_row(self, similarity_row, method):
        if method == 'max':
            norm_factor = similarity_row.max()
            if norm_factor == 0:
                norm_factor = 1
            return similarity_row / norm_factor

        elif method == 'sum':
            norm_factor = similarity_row.sum()
            if norm_factor == 0:
                norm_factor = 1
            return similarity_row / norm_factor

        elif method == 'none':
            return similarity_row

        else:
            raise ValueError('Not a valid normalization method')
class UserItemHybridRecommender_v2():
    def __init__(self, urm, urm_t, icm, icm2, enable_dict, urm_test=None):
        self.urm = urm
        self.setEnables(enable_dict)

        if self.enableSVD:
            self.svd = SVDRecommender(urm, nf=385)

        if self.enableSLIM:
            logFile = open("SLIM_BPR_Cython.txt", "a")

            self.slim = SLIM_BPR_Cython(urm.getCSR(),
                                        recompile_cython=False,
                                        positive_threshold=0,
                                        URM_validation=urm_test.getCSR(),
                                        final_model_sparse_weights=True,
                                        train_with_sparse_weights=False)

            self.slim.fit(epochs=100,
                          validation_every_n=1,
                          logFile=logFile,
                          batch_size=5,
                          topK=200,
                          sgd_mode="adagrad",
                          learning_rate=0.075)

            self.slim_sim = self.slim.get_similarity()

        if self.enableLFM:
            # LightFM
            print("starting USER CF")
            self.lfm = LightFMRecommender()
            self.lfm.fit(urm, epochs=100)
            print("USER CF finished")

        # User based
        print("starting USER CF")
        self.cbu = CollaborativeFiltering()
        self.cbu.fit(urm_t, k=100, h=8, mode='user')
        print("USER CF finished")

        # Item based
        print("starting ITEM CF")
        self.cbi = CollaborativeFiltering()
        self.cbi.fit(urm, k=125, h=10, mode='item')
        print("ITEM CF finished")

        # Content based artist
        print("starting CBF")
        self.cbf = ContentBasedFiltering(icm, urm, k=25, shrinkage=100)
        self.cbf.fit()
        print("CBF finished")

        if self.enableCBF2:
            print("starting CBF2")
            self.cbf2 = ContentBasedFiltering(icm2, urm, k=25, shrinkage=100)
            self.cbf2.fit()
            print("CBF2 finished")

    def fit(self, weights_dict, method='weight_norm'):

        self.user_weight = weights_dict.get('user_weight', 0)
        self.item_weight = weights_dict.get('item_weight', 0)
        self.cbf_weight = weights_dict.get('cbf_weight', 0)
        self.cbf2_weight = weights_dict.get('cbf2_weight', 0)
        self.svd_weight = weights_dict.get('svd_weight', 0)
        self.slim_weight = weights_dict.get('slim_weight', 0)
        self.lfm_weight = weights_dict.get('lfm_weight', 0)
        self.method = method

    def s_recommend(self, user, nRec=10, switchTH="15"):

        if self.method == 'weight_norm':

            norm_method = 'max'

            recommended_items_user = self.normalize_row(
                self.cbu.get_pred_row(user), method=norm_method)
            recommended_items_item = self.normalize_row(
                self.cbi.get_pred_row(user), method=norm_method)
            recommended_items_cbf = self.normalize_row(
                self.cbf.get_pred_row(user), method=norm_method)

            recommended_items_cbf2 = None
            if (self.enableCBF2):
                recommended_items_cbf2 = self.normalize_row(
                    self.cbf2.get_pred_row(user), method=norm_method)

            recommended_items_lfm = None
            if (self.enableLFM):
                recommended_items_lfm = self.normalize_row(
                    self.lfm.get_pred_row(user), method=norm_method)

            recommended_items_svd = None
            if (self.enableSVD):
                recommended_items_svd = self.normalize_row(
                    self.svd.get_pred_row(user), method=norm_method)

            recommended_items_slim = None
            if (self.enableSLIM):
                recommended_items_slim = self.normalize_row(
                    self.getSlimRow(user), method=norm_method)

            return self.predWeightRatingRows(
                user, nRec, recommended_items_user, recommended_items_item,
                recommended_items_cbf, recommended_items_cbf2,
                recommended_items_svd, recommended_items_slim)

        elif self.method == 'switch':

            if len(self.urm.extractTracksFromPlaylist(user)) < switchTH:
                # enough recommendations, use user
                return self.cbu.s_recommend(user, nRec=nRec)
            else:
                # not enough recommendations, use item
                return self.cbi.s_recommend(user, nRec=nRec)

        else:
            raise ValueError('Not a valid hybrid method')

    def m_recommend(self, user_ids, nRec=10):
        results = []
        for uid in user_ids:
            results.append(self.s_recommend(uid, nRec))
        return results

    def mixRecommendersRow(self, recommended_items_user,
                           recommended_items_item_item, nRec):

        # assign a score based on position

        # initialize
        result = {}
        for i in range(nRec + 3):
            result[str(recommended_items_user[i])] = 0
            result[str(recommended_items_item_item[i])] = 0

        # weight user based cf items
        for i in range(nRec + 3):
            result[str(
                recommended_items_user[i])] += (nRec - i) * self.user_weight

        # weight item based cf items
        for j in range(nRec + 3):
            result[str(
                recommended_items_item_item[j])] += (nRec -
                                                     j) * self.item_weight

        # sort the dict
        sorted_results = sorted(result.items(), key=itemgetter(1))
        rec_items = [x[0] for x in sorted_results]

        # flip to order by decreasing order
        rec_items = rec_items[::-1]

        # return only the topN recommendations
        return np.array(rec_items[0:nRec]).astype(int)

    def predWeightRatingRows(self, user, nRec, recommended_items_user,
                             recommended_items_item, recommended_items_cbf,
                             recommended_items_cbf2, recommended_items_svd,
                             recommended_items_slim):

        playlist_tracks = self.urm.extractTracksFromPlaylist(user)
        num_tracks = playlist_tracks.size
        extra_weight = num_tracks / 1000

        if (num_tracks > 8):
            extra_weight += 0.03
            if (num_tracks > 15):
                extra_weight += 0.03
                if (num_tracks > 20):
                    extra_weight += 0.03
                    if (num_tracks > 33):
                        extra_weight += 0.04

        pred_row_sparse = recommended_items_user * (self.user_weight + extra_weight) + recommended_items_item * self.item_weight \
                    + recommended_items_cbf * self.cbf_weight

        if self.enableSLIM:
            pred_row_sparse = pred_row_sparse + self.slim_weight * recommended_items_slim

        if self.enableCBF2:
            pred_row_sparse = pred_row_sparse + self.cbf2_weight * recommended_items_cbf2

        # needs to be before svd because svd output is dense
        pred_row = np.array(pred_row_sparse.todense()).squeeze()

        if self.enableSVD:
            pred_row = pred_row + self.svd_weight * recommended_items_svd

        ranking = np.argsort(-pred_row)
        recommended_items = self._filter_seen(user, ranking)

        return recommended_items[0:nRec]

    def _filter_seen(self, user_id, ranking):
        seen = self.urm.extractTracksFromPlaylist(user_id)
        unseen_mask = np.in1d(ranking, seen, assume_unique=True, invert=True)
        return ranking[unseen_mask]

    def getSlimRow(self, user):
        return self.urm.getCSR().getrow(user) * self.slim_sim

    def setEnables(self, enable_dict):
        self.enableSVD = enable_dict.get('enableSVD')
        self.enableSLIM = enable_dict.get('enableSLIM')
        self.enableCBF2 = enable_dict.get('enableCBF2')
        self.enableLFM = enable_dict.get('enableLFM')

    def normalize_row(self, recommended_items, method):
        if method == 'max':
            norm_factor = recommended_items.max()
            if norm_factor == 0: norm_factor = 1
            return recommended_items / norm_factor

        elif method == 'sum':
            norm_factor = recommended_items.sum()
            if norm_factor == 0: norm_factor = 1
            return recommended_items / norm_factor

        else:
            raise ValueError('Not a valid normalization method')
示例#6
0
文件: main.py 项目: vittorio96/RecSys
           shrink=10,
           similarity='cosine',
           normalize=True,
           feature_weighting="TF-IDF")  # artist
    if submission:
        recommended_items = cb.m_recommend(targetList, nRec=10)
        generate_output(targetList, recommended_items)
    else:
        cumulative_precision, cumulative_recall, cumulative_MAP = evaluate_algorithm(
            urm_test, cb)
        print(
            "Recommender, performance is: Precision = {:.4f}, Recall = {:.4f}, MAP = {:.6f}"
            .format(cumulative_precision, cumulative_recall, cumulative_MAP))

elif htype == "cbf":
    cbf = ContentBasedFiltering(icm2, urm, k=15, shrinkage=0)
    cbf.fit()

    if submission:
        recommended_items = cbf.m_recommend(targetList, nRec=10)
        generate_output(targetList, recommended_items)
    else:
        cumulative_precision, cumulative_recall, cumulative_MAP = evaluate_algorithm(
            urm_test, cbf)
        print(
            "Recommender, performance is: Precision = {:.4f}, Recall = {:.4f}, MAP = {:.6f}"
            .format(cumulative_precision, cumulative_recall, cumulative_MAP))

elif htype == "slim":
    slim = SLIM_BPR_Cython(urm.getCSR(),
                           recompile_cython=False,