plt.rc('font', size=BIGGER_SIZE) # controls default text sizes plt.rc('axes', titlesize=BIGGER_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=BIGGER_SIZE) # fontsize of the x and y labels qs = [0.6, 0.65, 0.707, 0.75, 0.8, 0.9] ps = [0., 0.1, 0.2, 0.25, 0.3, 0.35, 0.4] l_max = 100000 clean = False if len(sys.argv) == 2: clean = (sys.argv[1] == 'clean') CFHT_data = True thetasCFHT = get.thetas() xipCFHT = get.xip() ximCFHT = get.xim() sigmCFHT = get.sigm() sigpCFHT = get.sigp() begin_color = Color("blue") colors = list(begin_color.range_to(Color("green"), len(ps))) for q in qs: x_axis = dat.get_x_axis_st() i = 0 for p in ps: create.xi_CFHT_st(q, p, l_max, clean=clean) column1 = dat.get_xip_st(q, p)
plt.rc('axes', labelsize=BIGGER_SIZE) # fontsize of the x and y labels computes = False icosmo = int(sys.argv[1]) icosmos = [1, 4, 42] index = icosmos.index(icosmo) cosmos = ['Fiducial', 'WMAP9', 'Planck 2018'] ihm = 1 mmin_st = 14.0 # Importing Data from CFHT print("Loading data") # Length of CFHT thetas data N = 21 x = data.thetas() # Data from CFHTLenS survey xip = data.xip() xim = data.xim() y = xip.copy() y = np.append(y, xim) # Considering the real covariance matrix and all kind of errors yerr = data.cov_mat() yerrinv = np.linalg.inv(yerr) det = np.linalg.det(yerr) errp = data.sigp() errm = data.sigm()
def get_x_axis_st(): # it is simply CFHT data return dat.thetas()