def addData(self, xvals, yvals, xlabel, ylabel, nplotted, yerrors=None): xxvals, yyvals = Stats.filterNone((xvals, yvals)) color, linestyle, marker = self.getFormat(nplotted) self.bokeh_figure.line( xxvals, yyvals, color=color, line_width=2)
def render(self, dataframe, path): if len(dataframe.columns) < 2: raise ValueError( "requiring two coordinates, only got %s" % str(dataframe.columns)) plts, legend = [], [] blocks = ResultBlocks() for xcolumn, ycolumn in itertools.combinations(dataframe.columns, 2): # remove missing data points xvalues, yvalues = Stats.filterMissing( (dataframe[xcolumn], dataframe[ycolumn])) # remove columns with all NaN if len(xvalues) == 0 or len(yvalues) == 0: continue # apply log transformation on data not on plot if self.logscale: if "x" in self.logscale: xvalues = R.log10(xvalues) if "y" in self.logscale: yvalues = R.log10(yvalues) self.startPlot() # wrap, as pandas series can not # passed through rpy2. R.smoothScatter(numpy.array(xvalues, dtype=numpy.float), numpy.array(yvalues, dtype=numpy.float), xlab=xcolumn, ylab=ycolumn, nbin=self.nbins) blocks.extend(self.endPlot(dataframe, path)) return blocks
def apply(self, xvals, yvals): xx = xvals[~numpy.isnan(xvals)] yy = yvals[~numpy.isnan(yvals)] r = Stats.doMannWhitneyUTest(xx, yy) return r
def apply(self, xvals, yvals): return Stats.doCorrelationTest(xvals, yvals, method=self.method)
def smooth_histogram(self, data): if len(data) <= self.smooth_window_size: return data r = Stats.smooth(data, window_len=self.smooth_window_size) return r[:len(data)]