示例#1
0
def main(opt):
    model = build_model(opt)
    model = model.cuda()
    weights = torch.load(opt.load_weights_path,
                         map_location='cpu')['model_state_dict']
    utils.safe_load_weights(model, weights)
    model = model.eval()

    img_a = imageio.imread('./sample_data/imgs/cathedral_1.jpg', pilmode='RGB')
    img_b = imageio.imread('./sample_data/imgs/cathedral_2.jpg', pilmode='RGB')

    engine = SparseEngine(model, 32, mode='tile')
    t0 = time.time()
    corrs = engine.cotr_corr_multiscale_with_cycle_consistency(
        img_a,
        img_b,
        np.linspace(0.5, 0.0625, 4),
        1,
        max_corrs=opt.max_corrs,
        queries_a=None)
    t1 = time.time()

    utils.visualize_corrs(img_a, img_b, corrs)
    print(f'spent {t1-t0} seconds for {opt.max_corrs} correspondences.')
    dense = triangulate_corr(corrs, img_a.shape, img_b.shape)
    warped = cv2.remap(img_b,
                       dense[..., 0].astype(np.float32),
                       dense[..., 1].astype(np.float32),
                       interpolation=cv2.INTER_LINEAR,
                       borderMode=cv2.BORDER_CONSTANT)
    plt.imshow(warped / 255 * 0.5 + img_a / 255 * 0.5)
    plt.show()
示例#2
0
def main(opt):
    model = build_model(opt)
    model = model.cuda()
    weights = torch.load(opt.load_weights_path,
                         map_location='cpu')['model_state_dict']
    utils.safe_load_weights(model, weights)
    model = model.eval()

    img_a = imageio.imread('./sample_data/imgs/face_1.png', pilmode='RGB')
    img_b = imageio.imread('./sample_data/imgs/face_2.png', pilmode='RGB')
    queries = np.load('./sample_data/face_landmarks.npy')[0]

    engine = SparseEngine(model, 32, mode='stretching')
    corrs = engine.cotr_corr_multiscale(img_a,
                                        img_b,
                                        np.linspace(0.5, 0.0625, 4),
                                        1,
                                        queries_a=queries,
                                        force=False)

    f, axarr = plt.subplots(1, 2)
    axarr[0].imshow(img_a)
    axarr[0].scatter(*queries.T, s=1)
    axarr[0].title.set_text('Reference Face')
    axarr[0].axis('off')
    axarr[1].imshow(img_b)
    axarr[1].scatter(*corrs[:, 2:].T, s=1)
    axarr[1].title.set_text('Target Face')
    axarr[1].axis('off')
    plt.show()
示例#3
0
def main(opt):
    model = build_model(opt)
    model = model.cuda()
    weights = torch.load(opt.load_weights_path)['model_state_dict']
    utils.safe_load_weights(model, weights)
    model = model.eval()

    img_a = imageio.imread('./sample_data/imgs/21526113_4379776807.jpg')
    img_b = imageio.imread('./sample_data/imgs/21126421_4537535153.jpg')
    kp_a = np.load('./sample_data/21526113_4379776807.jpg.disk.kpts.npy')
    kp_b = np.load('./sample_data/21126421_4537535153.jpg.disk.kpts.npy')

    if opt.faster_infer:
        engine = FasterSparseEngine(model, 32, mode='tile')
    else:
        engine = SparseEngine(model, 32, mode='tile')
    t0 = time.time()
    corrs_a_b = engine.cotr_corr_multiscale(img_a,
                                            img_b,
                                            np.linspace(0.5, 0.0625, 4),
                                            1,
                                            max_corrs=kp_a.shape[0],
                                            queries_a=kp_a,
                                            force=True)
    corrs_b_a = engine.cotr_corr_multiscale(img_b,
                                            img_a,
                                            np.linspace(0.5, 0.0625, 4),
                                            1,
                                            max_corrs=kp_b.shape[0],
                                            queries_a=kp_b,
                                            force=True)
    t1 = time.time()
    print(f'COTR spent {t1-t0} seconds.')
    inds_a_b = np.argmin(distance_matrix(corrs_a_b[:, 2:], kp_b), axis=1)
    matched_a_b = np.stack([np.arange(kp_a.shape[0]), inds_a_b]).T
    inds_b_a = np.argmin(distance_matrix(corrs_b_a[:, 2:], kp_a), axis=1)
    matched_b_a = np.stack([np.arange(kp_b.shape[0]), inds_b_a]).T

    good = 0
    final_matches = []
    for m_ab in matched_a_b:
        for m_ba in matched_b_a:
            if (m_ab == m_ba[::-1]).all():
                good += 1
                final_matches.append(m_ab)
                break
    final_matches = np.array(final_matches)
    final_corrs = np.concatenate(
        [kp_a[final_matches[:, 0]], kp_b[final_matches[:, 1]]], axis=1)
    _, mask = cv2.findFundamentalMat(final_corrs[:, :2],
                                     final_corrs[:, 2:],
                                     cv2.FM_RANSAC,
                                     ransacReprojThreshold=5,
                                     confidence=0.999999)
    utils.visualize_corrs(img_a, img_b, final_corrs[np.where(mask[:, 0])])
示例#4
0
def main(opt):
    model = build_model(opt)
    model = model.cuda()
    weights = torch.load(opt.load_weights_path,
                         map_location='cpu')['model_state_dict']
    utils.safe_load_weights(model, weights)
    model = model.eval()

    img_a = imageio.imread('./sample_data/imgs/img_0.jpg', pilmode='RGB')
    img_b = imageio.imread('./sample_data/imgs/img_1.jpg', pilmode='RGB')

    if opt.faster_infer:
        engine = FasterSparseEngine(model, 32, mode='tile')
    else:
        engine = SparseEngine(model, 32, mode='tile')
    t0 = time.time()
    corrs = engine.cotr_corr_multiscale_with_cycle_consistency(
        img_a,
        img_b,
        np.linspace(0.5, 0.0625, 4),
        1,
        max_corrs=opt.max_corrs,
        queries_a=None)
    t1 = time.time()
    print(f'spent {t1-t0} seconds for {opt.max_corrs} correspondences.')

    camera_a = np.load('./sample_data/camera_0.npy', allow_pickle=True).item()
    camera_b = np.load('./sample_data/camera_1.npy', allow_pickle=True).item()
    center_a = camera_a['cam_center']
    center_b = camera_b['cam_center']
    rays_a = pcd_projector.PointCloudProjector.pcd_2d_to_pcd_3d_np(
        corrs[:, :2],
        np.ones([corrs.shape[0], 1]) * 2,
        camera_a['intrinsic'],
        motion=camera_a['c2w'])
    rays_b = pcd_projector.PointCloudProjector.pcd_2d_to_pcd_3d_np(
        corrs[:, 2:],
        np.ones([corrs.shape[0], 1]) * 2,
        camera_b['intrinsic'],
        motion=camera_b['c2w'])
    dir_a = rays_a - center_a
    dir_b = rays_b - center_b
    center_a = np.array([center_a] * corrs.shape[0])
    center_b = np.array([center_b] * corrs.shape[0])
    points = triangulate_rays_to_pcd(center_a, dir_a, center_b, dir_b)
    colors = (
        img_a[tuple(np.floor(corrs[:, :2]).astype(int)[:, ::-1].T)] / 255 +
        img_b[tuple(np.floor(corrs[:, 2:]).astype(int)[:, ::-1].T)] / 255) / 2
    colors = np.array(colors)

    pcd = o3d.geometry.PointCloud()
    pcd.points = o3d.utility.Vector3dVector(points)
    pcd.colors = o3d.utility.Vector3dVector(colors)
    o3d.visualization.draw_geometries([pcd])
示例#5
0
def main(opt):
    model = build_model(opt)
    model = model.cuda()
    weights = torch.load(opt.load_weights_path,
                         map_location='cpu')['model_state_dict']
    utils.safe_load_weights(model, weights)
    model = model.eval()

    img_a = imageio.imread('./sample_data/imgs/paint_1.JPG', pilmode='RGB')
    img_b = imageio.imread('./sample_data/imgs/paint_2.jpg', pilmode='RGB')
    rep_img = imageio.imread('./sample_data/imgs/Meisje_met_de_parel.jpg',
                             pilmode='RGB')
    rep_mask = np.ones(rep_img.shape[:2])
    lu_corner = [932, 1025]
    ru_corner = [2469, 901]
    lb_corner = [908, 2927]
    rb_corner = [2436, 3080]
    queries = np.array([lu_corner, ru_corner, lb_corner,
                        rb_corner]).astype(np.float32)
    rep_coord = np.array([[0, 0], [rep_img.shape[1], 0], [0, rep_img.shape[0]],
                          [rep_img.shape[1],
                           rep_img.shape[0]]]).astype(np.float32)

    engine = SparseEngine(model, 32, mode='stretching')
    corrs = engine.cotr_corr_multiscale(img_a,
                                        img_b,
                                        np.linspace(0.5, 0.0625, 4),
                                        1,
                                        queries_a=queries,
                                        force=True)

    T = cv2.getPerspectiveTransform(rep_coord, corrs[:, 2:].astype(np.float32))
    vmask = cv2.warpPerspective(rep_mask, T,
                                (img_b.shape[1], img_b.shape[0])) > 0
    warped = cv2.warpPerspective(rep_img, T, (img_b.shape[1], img_b.shape[0]))
    out = warped * vmask[..., None] + img_b * (~vmask[..., None])

    f, axarr = plt.subplots(1, 4)
    axarr[0].imshow(rep_img)
    axarr[0].title.set_text('Virtual Paint')
    axarr[0].axis('off')
    axarr[1].imshow(img_a)
    axarr[1].title.set_text('Annotated Frame')
    axarr[1].axis('off')
    axarr[2].imshow(img_b)
    axarr[2].title.set_text('Target Frame')
    axarr[2].axis('off')
    axarr[3].imshow(out)
    axarr[3].title.set_text('Overlay')
    axarr[3].axis('off')
    plt.show()
示例#6
0
    def __init__(self, args):
        super().__init__()
        if type(args) == dict:
            args = Namespace(**args)
        self.imsize = args.imsize
        self.match_threshold = args.match_threshold
        self.batch_size = args.batch_size
        self.max_corrs = args.max_corrs
        args.dim_feedforward = args.backbone_layer_dims[args.layer]

        self.model = build_model(args)
        self.model.load_state_dict(
            torch.load(args.ckpt, map_location='cpu')['model_state_dict'])
        self.model = self.model.eval().to(self.device)
        self.name = 'COTR'
        print(f'Initialize {self.name}')
示例#7
0
def main(opt):
    model = build_model(opt)
    model = model.cuda()
    weights = torch.load(opt.load_weights_path)['model_state_dict']
    utils.safe_load_weights(model, weights)
    model = model.eval()

    img_a = imageio.imread('./sample_data/imgs/petrzin_01.png')
    img_b = imageio.imread('./sample_data/imgs/petrzin_02.png')
    img_a_area = 1.0
    img_b_area = 1.0
    gt_corrs = np.loadtxt('./sample_data/petrzin_pts.txt')
    kp_a = gt_corrs[:, :2]
    kp_b = gt_corrs[:, 2:]

    engine = SparseEngine(model, 32, mode='tile')
    t0 = time.time()
    corrs = engine.cotr_corr_multiscale(img_a,
                                        img_b,
                                        np.linspace(0.75, 0.1, 4),
                                        1,
                                        max_corrs=kp_a.shape[0],
                                        queries_a=kp_a,
                                        force=True,
                                        areas=[img_a_area, img_b_area])
    t1 = time.time()
    print(f'COTR spent {t1-t0} seconds.')

    utils.visualize_corrs(img_a, img_b, corrs)
    plt.imshow(img_b)
    plt.scatter(kp_b[:, 0], kp_b[:, 1])
    plt.scatter(corrs[:, 2], corrs[:, 3])
    plt.plot(np.stack([kp_b[:, 0], corrs[:, 2]], axis=1).T,
             np.stack([kp_b[:, 1], corrs[:, 3]], axis=1).T,
             color=[1, 0, 0])
    plt.show()
示例#8
0
def train(opt):
    pprint.pprint(dict(os.environ), width=1)
    result = subprocess.Popen(["nvidia-smi"], stdout=subprocess.PIPE)
    print(result.stdout.read().decode())
    device = torch.cuda.current_device()
    print(f'can see {torch.cuda.device_count()} gpus')
    print(
        f'current using gpu at {device} -- {torch.cuda.get_device_name(device)}'
    )
    # dummy = torch.rand(3758725612).to(device)
    # del dummy
    torch.cuda.empty_cache()
    model = build_model(opt)
    model = model.to(device)
    if opt.enable_zoom:
        train_dset = cotr_dataset.COTRZoomDataset(opt, 'train')
        val_dset = cotr_dataset.COTRZoomDataset(opt, 'val')
    else:
        train_dset = cotr_dataset.COTRDataset(opt, 'train')
        val_dset = cotr_dataset.COTRDataset(opt, 'val')

    train_loader = DataLoader(train_dset,
                              batch_size=opt.batch_size,
                              shuffle=opt.shuffle_data,
                              num_workers=opt.workers,
                              worker_init_fn=utils.worker_init_fn,
                              pin_memory=True)
    val_loader = DataLoader(val_dset,
                            batch_size=opt.batch_size,
                            shuffle=opt.shuffle_data,
                            num_workers=opt.workers,
                            drop_last=True,
                            worker_init_fn=utils.worker_init_fn,
                            pin_memory=True)

    optim_list = [
        {
            "params": model.transformer.parameters(),
            "lr": opt.learning_rate
        },
        {
            "params": model.corr_embed.parameters(),
            "lr": opt.learning_rate
        },
        {
            "params": model.query_proj.parameters(),
            "lr": opt.learning_rate
        },
        {
            "params": model.input_proj.parameters(),
            "lr": opt.learning_rate
        },
    ]
    if opt.lr_backbone > 0:
        optim_list.append({
            "params": model.backbone.parameters(),
            "lr": opt.lr_backbone
        })

    optim = torch.optim.Adam(optim_list)
    trainer = COTRTrainer(opt, model, optim, None, train_loader, val_loader)
    trainer.train()