示例#1
0
def check_covered(dim, set1, list_of_covers):
    em = ExprManager()
    s_cover = SmtEngine(em)
    real_type = em.realType()

    x = [em.mkVar("x_[%s]" % (j + 1), real_type) for j in range(dim)]
    list_of_constraints = []

    #x \in set1
    list_of_constraints.append(get_point_membership_constraint(em, x, set1))

    #x is not in any of the covers
    for cover in list_of_covers:
        list_of_constraints.append(
            em.mkExpr(CVC4.NOT, get_point_membership_constraint(em, x, cover)))

    s_cover.assertFormula(get_cvc4_and(em, list_of_constraints))
    chk = s_cover.checkSat()
    if (chk == 1):
        return False
    else:
        return True
示例#2
0
 def findCounterexample(self, asserts, query, timeout=None):
     """Tries to find a counterexample to the query while
        asserts remains valid."""
     self.em = ExprManager()
     self.solver = SmtEngine(self.em)
     if timeout is not None:
         self.options['tlimit-per'] = timeout * 1000
     for name, value in CVCWrapper.options.items():
         self.solver.setOption(name, SExpr(str(value)))
     self.solver.setLogic(CVCWrapper.logic)
     self.query = query
     self.asserts = asserts
     result, model = self._findModel()
     return result, model
示例#3
0
 def findCounterexample(self, asserts, query):
     """Tries to find a counterexample to the query while
        asserts remains valid."""
     self.em = ExprManager()
     self.solver = SmtEngine(self.em)
     for name, value in CVCWrapper.options.items():
         self.solver.setOption(name, SExpr(str(value)))
     self.solver.setLogic(CVCWrapper.logic)
     self.query = query
     self.asserts = self._coneOfInfluence(asserts, query)
     result = self._findModel()
     log.debug("Query -- %s" % self.query)
     log.debug("Asserts -- %s" % asserts)
     log.debug("Cone -- %s" % self.asserts)
     log.debug("Result -- %s" % result)
     return result
示例#4
0
 def findCounterexample(self, asserts, query, timeout=10**10):
     starttime = time.process_time()
     Z3Str2Wrapper.options['tlimit-per'] = timeout * 1000
     self.solvetimeout = timeout
     self.em = ExprManager()
     self.solver = SmtEngine(self.em)
     for name, value in Z3Str2Wrapper.options.items():
         self.solver.setOption(name, SExpr(str(value)))
     self.solver.setLogic(Z3Str2Wrapper.logic)
     self.query = query
     self.asserts = asserts
     result, model = self._findModel()
     endtime = time.process_time()
     log.debug("Timeout -- %s" % timeout)
     log.debug("Result -- %s" % result)
     log.debug("Model -- %s" % model)
     log.debug("Solver time: {0:.2f} seconds".format(timeout))
     solvertime = endtime - starttime
     return result, model, solvertime
示例#5
0
文件: cvc_wrap.py 项目: njues/PyExZ3
 def findCounterexample(self, asserts, query, timeout=None):
     """Tries to find a counterexample to the query while
        asserts remains valid."""
     startime = time.process_time()
     self.em = ExprManager()
     self.solver = SmtEngine(self.em)
     if timeout is not None:
         self.options['tlimit-per'] = timeout * 1000
     for name, value in CVCWrapper.options.items():
         self.solver.setOption(name, SExpr(str(value)))
     self.solver.setLogic(CVCWrapper.logic)
     self.query = query
     self.asserts = asserts
     result, model = self._findModel()
     endtime = time.process_time()
     log.debug("Timeout -- %s" % timeout)
     log.debug("Result -- %s" % result)
     log.debug("Model -- %s" % model)
     log.debug("Solver time: {0:.2f} seconds".format(endtime - startime))
     solvertime = endtime - startime
     return result, model, solvertime
示例#6
0
def main():
    em = ExprManager()
    smt = SmtEngine(em)

    # Prove that for integers x and y:
    #   x > 0 AND y > 0  =>  2x + y >= 3

    integer = em.integerType()

    x = em.mkVar("x", integer)
    y = em.mkVar("y", integer)
    zero = em.mkConst(Rational(0))

    x_positive = em.mkExpr(CVC4.GT, x, zero)
    y_positive = em.mkExpr(CVC4.GT, y, zero)

    two = em.mkConst(Rational(2))
    twox = em.mkExpr(CVC4.MULT, two, x)
    twox_plus_y = em.mkExpr(CVC4.PLUS, twox, y)

    three = em.mkConst(Rational(3))
    twox_plus_y_geq_3 = em.mkExpr(CVC4.GEQ, twox_plus_y, three)

    formula = Expr(em.mkExpr(CVC4.AND, x_positive,
                             y_positive)).impExpr(Expr(twox_plus_y_geq_3))

    print "Checking validity of formula " + formula.toString() + " with CVC4."
    print "CVC4 should report VALID."
    print "Result from CVC4 is: " + smt.query(formula).toString()

    return 0
示例#7
0
def main():
  em = ExprManager()
  smt = SmtEngine(em)

  # Prove that for integers x and y:
  #   x > 0 AND y > 0  =>  2x + y >= 3

  integer = em.integerType()

  x = em.mkVar("x", integer)
  y = em.mkVar("y", integer)
  zero = em.mkConst(Rational(0))

  x_positive = em.mkExpr(CVC4.GT, x, zero)
  y_positive = em.mkExpr(CVC4.GT, y, zero)

  two = em.mkConst(Rational(2))
  twox = em.mkExpr(CVC4.MULT, two, x)
  twox_plus_y = em.mkExpr(CVC4.PLUS, twox, y)

  three = em.mkConst(Rational(3))
  twox_plus_y_geq_3 = em.mkExpr(CVC4.GEQ, twox_plus_y, three)

  formula = Expr(em.mkExpr(CVC4.AND, x_positive, y_positive)).impExpr(Expr(twox_plus_y_geq_3))

  print "Checking validity of formula " + formula.toString() + " with CVC4."
  print "CVC4 should report VALID."
  print "Result from CVC4 is: " + smt.query(formula).toString()

  return 0
示例#8
0
def get_controller_cvc4(Theta, initial_size, A, B, u_dim, u_poly, target,
                        avoid_list, avoid_list_dynamic, safe, num_steps,
                        Q_multiplier):
    #set safe to be None if you want to run the avoid_list version. Else set avoid_list to be None

    P, radius_dim, _, lam, G = get_overapproximate_rectangles(
        A, B, Q_multiplier, num_steps)
    radius_list = radius_without_r0(P, radius_dim, num_steps, lam)
    K = G * (-1)

    x_dim = len(radius_list[0])
    sqrt_dim_inverse = 10000.0 / (math.floor(math.sqrt(x_dim * 100000000.0)))

    em = ExprManager()
    s = SmtEngine(em)
    s.setOption("produce-models", SExpr("true"))
    real_type = em.realType()

    x = [[
        em.mkVar("x_ref_%s[%s]" % (i, j + 1), real_type) for j in range(x_dim)
    ] for i in range(num_steps + 1)]
    u = [[
        em.mkVar("u_ref_%s[%s]" % (i, j + 1), real_type) for j in range(u_dim)
    ] for i in range(num_steps)]
    r = em.mkVar("r0", real_type)
    initial_rectangle = []
    for i in range(x_dim):
        rl_mult_r = em.mkExpr(CVC4.MULT, get_cvc4_const(em, radius_list[0][i]),
                              r)
        lo = em.mkExpr(CVC4.MINUS, x[0][i], rl_mult_r)
        hi = em.mkExpr(CVC4.PLUS, x[0][i], rl_mult_r)
        initial_rectangle.append((lo, hi))

    if print_detail:
        print("Adding constraints ... ")
    if safe is None:
        add_constraints(s, em, x, u, r, Theta, radius_list, x_dim, A, u_dim, B,
                        u_poly, target, avoid_list, avoid_list_dynamic,
                        initial_rectangle, num_steps)
    else:
        add_constraints_safety(s, em, x, u, r, Theta, radius_list, x_dim, A,
                               u_dim, B, u_poly, target, safe,
                               initial_rectangle, num_steps)

    if print_detail:
        print("Done adding main constraints ... ")

    first_trajectory_found = False
    s.push()
    if print_detail:
        print("Now adding Theta constraints ... ")
    add_Theta_constraint(s, em, Theta, x[0], True)
    s.push()
    if print_detail:
        print("Done adding Theta constraints ... ")
        print("Now adding radius constraints ... ")
    add_radius_constraint(s, em, r, get_cvc4_const(em, initial_size))

    if print_detail:
        print("Done adding radius constraints ... ")

    Theta_has_been_covered = False
    number_of_steps_initial_size_has_been_halved = 0
    num_iters = 0
    covered_list = []
    trajectory_radius_controller_list = [
    ]  #List of tuples of the form (trajectory, radius_list)

    if print_detail:
        print("Starting iterations")

    while ((not Theta_has_been_covered) and
           number_of_steps_initial_size_has_been_halved < max_decrease_steps
           and num_iters < max_num_iters):
        num_iters = num_iters + 1

        s_check = s.checkSat()
        if print_detail:
            print("checked")
        if (s_check.isSat() == 1):
            # trajectory_radius_controller_list = [[]]
            trajectory = [[
                s.getValue(x[i][j]).getConstRational().getDouble()
                for j in range(x_dim)
            ] for i in range(num_steps + 1)]
            controller = [[
                s.getValue(u[i][j]).getConstRational().getDouble()
                for j in range(u_dim)
            ] for i in range(num_steps)]

            rad = s.getValue(r).getConstRational().getDouble()
            init_point = trajectory[0]
            init_radius = [
                r_i * rad * sqrt_dim_inverse for r_i in radius_list[0]
            ]
            cover = []
            for i in range(len(init_point)):
                x_i = init_point[i]
                r_i = init_radius[i]
                cover.append((x_i - r_i, x_i + r_i))
            covered_list.append((True, cover))
            Theta_has_been_covered = check_covered(x_dim, Theta, covered_list)
            trajectory_radius_controller_list.append(
                (trajectory, [[rad * rad_dim for rad_dim in rad_step]
                              for rad_step in radius_list], controller))

            if print_detail:
                print("Found trajectory from:", trajectory[0],
                      "with radius = ", init_radius[0])

            if not first_trajectory_found:
                first_trajectory_found = True
                s.pop()
                s.pop()
                add_Theta_constraint(s, em, Theta, x[0], False)
            else:
                s.pop()

            add_cover_constraint(s, em, (True, cover), x[0], initial_rectangle)
            s.push()
            add_radius_constraint(s, em, r, get_cvc4_const(em, initial_size))

        else:
            if print_detail:
                print("Fails for:", initial_size)
            initial_size = initial_size * multiplicative_factor_for_radius
            number_of_steps_initial_size_has_been_halved = number_of_steps_initial_size_has_been_halved + 1
            s.pop()
            s.push()
            add_radius_constraint(s, em, r, get_cvc4_const(em, initial_size))

    print("Number of iterations: " + str(num_iters))
    return (K, trajectory_radius_controller_list, covered_list, num_iters)
示例#9
0
文件: solvers.py 项目: shxdow/EMME
    def __compute_models(self,
                         model,
                         num,
                         blocking_manager,
                         constraints=None,
                         shared_objects=None):
        opts = Options()
        opts.setInputLanguage(CVC4.INPUT_LANG_CVC4)

        exit_with_unknown = False

        if shared_objects is None:
            shared_objects = []

        exprmgr = ExprManager(opts)

        smt = SmtEngine(exprmgr)
        smt.setOption("produce-models", SExpr(True))
        smt.setOption("fmf-bound", SExpr(True))
        smt.setOption("macros-quant", SExpr(True))
        smt.setOption("finite-model-find", SExpr(True))
        #        smt.setOption("repeat-simp", SExpr(True))
        #        smt.setOption("check-models", SExpr(True))
        #        smt.setOption("full-saturate-quant", SExpr(True))
        smt.setOption("incremental", SExpr(True))

        ind = 0

        assertions = blocking_manager.compute_from_sharedobjs(shared_objects)
        model = model + assertions

        if constraints:
            model += "\n%s;" % (constraints)

        parserbuilder = ParserBuilder(exprmgr, "", opts)
        parserbuilder.withStringInput(model)
        parser = parserbuilder.build()

        symboltable = parser.getSymbolTable()

        blocking_manager.exprmgr = exprmgr
        blocking_manager.symboltable = symboltable

        while True:
            cmd = parser.nextCommand()
            if not cmd: break
            cmd.invoke(smt)

        while True:
            checksat = CheckSatCommand()
            checksat.invoke(smt)

            sat = checksat.getResult().isSat() == 1
            unk = checksat.getResult().isUnknown()
            uns = (not sat) and (not unk)

            Logger.log("sat: %s, uns: %s, unk: %s" % (sat, uns, unk), 2)

            exitcond = (not sat) if exit_with_unknown else uns

            if exitcond:
                return (shared_objects, 0)

            (bclauses, shared_obj) = blocking_manager.compute_from_smt(smt)

            Logger.log("%s" % str(shared_obj), 2)

            if shared_obj not in shared_objects:
                shared_objects.append(shared_obj)
            else:
                if constraints is not None:
                    return (shared_objects, 2)

            for bclause in bclauses:
                assertion = AssertCommand(bclause)
                assertion.invoke(smt)

            Logger.msg(".", 0, constraints is None, 0)

            ind += 1
            if (num != -1) and (ind >= num):
                return (shared_objects, 1)

        return (None, -1)