def estimate_beta_ridge(x, y, alpha): """ SGD estimate of beta by minimizing the squared error and the ridge penalty scale alpha. """ beta_initial = [decimal.Decimal(random.random()) for _ in x[0]] return minimize_stochastic( partial(squared_error_ridge, alpha=alpha), partial(squared_error_ridge_gradient, alpha=alpha), x, y, beta_initial, decimal.Decimal(0.001))
def estimate_beta_ridge(x, y, alpha): """ SGD estimate of beta by minimizing the squared error and the ridge penalty scale alpha. """ beta_initial = [decimal.Decimal(random.random()) for _ in x[0]] return minimize_stochastic(partial(squared_error_ridge, alpha=alpha), partial(squared_error_ridge_gradient, alpha=alpha), x, y, beta_initial, decimal.Decimal(0.001))
def estimate_beta(x, y): # guess the initial beta #beta_initial = [decimal.Decimal(random.random()) for _ in x[0]] #return minimize_stochastic(squared_error, squared_error_gradient, # x, y, beta_initial, decimal.Decimal(0.001)) # guess the initial beta beta_initial = [random.random() for _ in x[0]] return minimize_stochastic(squared_error, squared_error_gradient, x, y, beta_initial, 0.001)