def submitAccuracy(): accuracy = NBAccuracy(features_train, labels_train, features_test, labels_test) return accuracy
### in together--separate them so we can give them different colors in the scatterplot, ### and visually identify them grade_fast = [ features_train[ii][0] for ii in range(0, len(features_train)) if labels_train[ii] == 0 ] bumpy_fast = [ features_train[ii][1] for ii in range(0, len(features_train)) if labels_train[ii] == 0 ] grade_slow = [ features_train[ii][0] for ii in range(0, len(features_train)) if labels_train[ii] == 1 ] bumpy_slow = [ features_train[ii][1] for ii in range(0, len(features_train)) if labels_train[ii] == 1 ] # You will need to complete this function imported from the ClassifyNB script. # Be sure to change to that code tab to complete this quiz. clf = classify(features_train, labels_train) accuracy = NBAccuracy(features_train, labels_train, features_test, labels_test) ### draw the decision boundary with the text points overlaid prettyPicture(clf, features_test, labels_test) print(accuracy) #print(labels_test[0:5]-labels_test[1:6]) #output_image("test.png", "png", open("test.png", "rb").read())
from class_vis import prettyPicture from prep_terrain_data import makeTerrainData from ClassifyNB import NBAccuracy from ClassifySVM import SVMAccuracy import matplotlib.pyplot as plt import numpy as np import pylab as pl features_train, labels_train, features_test, labels_test = makeTerrainData() print( 'NB:' + str(NBAccuracy(features_train, labels_train, features_test, labels_test))) print( 'SVM:' + str(SVMAccuracy(features_train, labels_train, features_test, labels_test)))