def main(): path = "/Users/tao/Documents/coding/dataset/AmazonReviews/product_review15_category3_item4/" with open("result_amazon_with_1534", "a") as f: for ix in [5]: print str(ix) + " Begin" model_result, test_result = construction(path + str(ix) + "/") precision, recall, fscore = f_score_of_feature(model_result, test_result) feature = pd.read_csv(path + str(ix) + "/feature.csv") print feature.ix[list(model_result[0])] result = str(ix) + "\t" + str(precision) + "\t" + str(recall) + "\t" + str(fscore) + "\n" print result f.write(result) print str(ix) + " End"
def main(): path = '/Users/tao/Documents/coding/dataset/AmazonReviews/product_review15_category3_item4/' with open('result_amazon_with_1534', 'a') as f: for ix in [5]: print str(ix) + ' Begin' model_result, test_result = construction(path + str(ix) + '/') precision, recall, fscore = f_score_of_feature( model_result, test_result) feature = pd.read_csv(path + str(ix) + '/feature.csv') print feature.ix[list(model_result[0])] result = str(ix) + '\t' + str(precision) + '\t' + str( recall) + '\t' + str(fscore) + '\n' print result f.write(result) print str(ix) + ' End'
def main(): path = '/Users/tao/Documents/coding/dataset/YelpReviews/product_review5_category3_item4/' print 'yelp 10 f' with open('result_yelp_with_534_10f', 'a') as f: for ix in reversed([5, 6]): print str(ix) + ' Begin' paper_symbol_A, paper_symbol_X, paper_symbol_Y, user_num, item_num, feature_num, train_buy_set, real_result, test_mention_feature = construction(path + str(ix) + '/') r_plus_r_p, lamda_x, lamda_y, lamda_u, lamda_h, lamda_v, convergence, T = _get_paramenters() for sum in r_plus_r_p: paper_symbol_U_1, paper_symbol_U_2, paper_symbol_V, paper_symbol_H_1, paper_symbol_H_2 = compute(paper_symbol_A, paper_symbol_X, paper_symbol_Y, user_num, item_num, feature_num, sum*0.4, sum * 0.6, lamda_x, lamda_y, lamda_u, lamda_h, lamda_v, convergence, T) #print T, paper_symbol_U_1.ix[:5,:5], (paper_symbol_U_1.dot(paper_symbol_U_2.T) + paper_symbol_H_1.dot(paper_symbol_H_2.T)).ix[:5,:5] for alpha in [0]:#,1-0.1**2,1-0.1**3,1-0.1**4,1-0.1**5,1-0.1**6,1-0.1**7,1-0.1**8,1-0.1**9,1-0.1**10,1-0.1**11,1-0.1**12,1-0.1**13]: #model_result = recommend_items(paper_symbol_U_1, paper_symbol_U_2, paper_symbol_V, paper_symbol_H_1, paper_symbol_H_2, train_buy_set, alpha, 50, 10) model_result = recommend_features(paper_symbol_U_1, paper_symbol_V, 10) precision, recall, f1_result = f_score_of_feature(model_result, test_mention_feature) #precision, recall, f1_result = f_score(model_result, real_result) result = str(ix) + '\t' + str(sum) + '\t' + str(precision) + '\t' + str(recall) + '\t' + str(f1_result) + '\n' print result f.write(result) print str(ix) + ' End'
def main(): path = '/Users/tao/Documents/coding/dataset/YelpReviews/product_review5_category3_item4/' print 'yelp 10 f' with open('result_yelp_with_534_10f', 'a') as f: for ix in reversed([5, 6]): print str(ix) + ' Begin' paper_symbol_A, paper_symbol_X, paper_symbol_Y, user_num, item_num, feature_num, train_buy_set, real_result, test_mention_feature = construction( path + str(ix) + '/') r_plus_r_p, lamda_x, lamda_y, lamda_u, lamda_h, lamda_v, convergence, T = _get_paramenters( ) for sum in r_plus_r_p: paper_symbol_U_1, paper_symbol_U_2, paper_symbol_V, paper_symbol_H_1, paper_symbol_H_2 = compute( paper_symbol_A, paper_symbol_X, paper_symbol_Y, user_num, item_num, feature_num, sum * 0.4, sum * 0.6, lamda_x, lamda_y, lamda_u, lamda_h, lamda_v, convergence, T) #print T, paper_symbol_U_1.ix[:5,:5], (paper_symbol_U_1.dot(paper_symbol_U_2.T) + paper_symbol_H_1.dot(paper_symbol_H_2.T)).ix[:5,:5] for alpha in [ 0 ]: #,1-0.1**2,1-0.1**3,1-0.1**4,1-0.1**5,1-0.1**6,1-0.1**7,1-0.1**8,1-0.1**9,1-0.1**10,1-0.1**11,1-0.1**12,1-0.1**13]: #model_result = recommend_items(paper_symbol_U_1, paper_symbol_U_2, paper_symbol_V, paper_symbol_H_1, paper_symbol_H_2, train_buy_set, alpha, 50, 10) model_result = recommend_features(paper_symbol_U_1, paper_symbol_V, 10) precision, recall, f1_result = f_score_of_feature( model_result, test_mention_feature) #precision, recall, f1_result = f_score(model_result, real_result) result = str(ix) + '\t' + str(sum) + '\t' + str( precision) + '\t' + str(recall) + '\t' + str( f1_result) + '\n' print result f.write(result) print str(ix) + ' End'