"weight_matrix": [0, 0.006], "S": [0.0001, 0.0008], #"S": [0.0003, 0.0024], #"S": [0.0000, 0.000], } thickner_para = { "dt":1, "noise_in": False, "noise_p": 0.002, #"noise_type": 1, "noise_type": "None", 'time_length': 20,# 浓密机每次仿真20秒 } from Control_Exp1001.demo.thickener.common import exp_name exp_name.set_exp_name('DHPandDhpVI') EXP_NAME = exp_name.get_exp_name() img_path = os.path.join('../images',EXP_NAME) if not os.path.exists(img_path): os.mkdir(img_path) def new_dhp_vi(): capacity= 20 predict_round=6000 gamma=0.6 replay_DhpVI = ReplayBuffer(capacity=capacity) env_DhpVI = Thickener( noise_p=0.03, noise_in=True, ) exploration = No_Exploration()
penalty_para = { #"weight_matrix": [0, 0.002], "weight_matrix": [0, 0.004], "S": [0.0001, 0.0008], #"S": [0.0003, 0.0024], #"S": [0.0000, 0.000], } thickner_para = { "dt": 1, "noise_in": False, "noise_p": 0.002, "noise_type": 3, 'time_length': 20, # 浓密机每次仿真20秒 } from Control_Exp1001.demo.thickener.common import exp_name exp_name.set_exp_name('VIandHDP') EXP_NAME = exp_name.get_exp_name() img_path = os.path.join('../images', EXP_NAME) if not os.path.exists(img_path): os.mkdir(img_path) def new_vi(): capacity = 2 predict_round = 3000 u_optim = 'sgd' gamma = 0.6 replay_vi = ReplayBuffer(capacity=capacity) env_VI = Thickener( noise_p=0.03, noise_in=True,
"weight_matrix": [0, 0.006], "S": [0.0001, 0.0008], #"S": [0.0003, 0.0024], #"S": [0.0000, 0.000], } thickner_para = { "dt":1, "noise_in": False, "noise_p": 0.002, #"noise_type": 1, "noise_type": "None", 'time_length': 20,# 浓密机每次仿真20秒 } from Control_Exp1001.demo.thickener.common import exp_name exp_name.set_exp_name('HDPandDHP') EXP_NAME = exp_name.get_exp_name() img_path = os.path.join('../images',EXP_NAME) if not os.path.exists(img_path): os.mkdir(img_path) def new_dhp(): capacity= 20 predict_round=6000 gamma=0.0 replay_DHP = ReplayBuffer(capacity=capacity) env_DHP = Thickener( noise_p=0.03, noise_in=True, ) exploration = No_Exploration()
penalty_para = { #"weight_matrix": [0, 0.002], "weight_matrix": [0, 0.004], "S": [0.0001, 0.0008], #"S": [0.0003, 0.0024], #"S": [0.0000, 0.000], } thickner_para = { "dt":1, "noise_in": False, "noise_p": 0.002, "noise_type": 1, 'time_length': 20,# 浓密机每次仿真20秒 } from Control_Exp1001.demo.thickener.common import exp_name exp_name.set_exp_name('VIandVIub') EXP_NAME = exp_name.get_exp_name() img_path = os.path.join('../images',EXP_NAME) if not os.path.exists(img_path): os.mkdir(img_path) def new_vi(): capacity=2 predict_round=3000 u_optim='sgd' gamma=0.6 replay_vi = ReplayBuffer(capacity=capacity) env_VI = Thickener( noise_p=0.03, noise_in=True, ) exploration = No_Exploration()
"weight_matrix": [0, 0.006], "S": [0.0001, 0.0008], #"S": [0.0003, 0.0024], #"S": [0.0000, 0.000], } thickner_para = { "dt": 1, "noise_in": False, "noise_p": 0.002, #"noise_type": 1, "noise_type": "None", 'time_length': 20, # 浓密机每次仿真20秒 } from Control_Exp1001.demo.thickener.common import exp_name exp_name.set_exp_name('HDPandDhpVI') EXP_NAME = exp_name.get_exp_name() img_path = os.path.join('../images', EXP_NAME) if not os.path.exists(img_path): os.mkdir(img_path) def new_dhp_vi(): capacity = 2 predict_round = 6000 gamma = 0.6 replay_DhpVI = ReplayBuffer(capacity=capacity) env_DhpVI = Thickener( noise_p=0.03, noise_in=True, )
#"weight_matrix": [0, 0.002], #"weight_matrix": [0, 0.010], "weight_matrix": [0, 0.0040], "S": [0.0001, 0.0008], #"S": [0.0003, 0.0024], #"S": [0.0000, 0.000], } thickner_para = { "dt":1, "noise_in": False, "noise_p": 0.002, "noise_type": 2, 'time_length': 20,# 浓密机每次仿真20秒 } from Control_Exp1001.demo.thickener.common import exp_name exp_name.set_exp_name('VIandHDPandDHP') EXP_NAME = exp_name.get_exp_name() img_path = os.path.join('../images',EXP_NAME) if not os.path.exists(img_path): os.mkdir(img_path) def new_vi(): capacity=2 #经验池的大小,需要大于或等于batch_size predict_round=3000 u_optim='sgd' # 寻找u*使用的梯度下降算法 gamma=0.6 replay_vi = ReplayBuffer(capacity=capacity) # 这个浓密机是用来生成数据训练预测模型用的 env_VI = Thickener( noise_p=0.03, noise_in=True, )
penalty_para = { #"weight_matrix": [0, 0.002], "weight_matrix": [0, 0.004], "S": [0.0001, 0.0008], #"S": [0.0003, 0.0024], #"S": [0.0000, 0.000], } thickner_para = { "dt": 1, "noise_in": False, "noise_p": 0.002, "noise_type": 2, 'time_length': 20, # 浓密机每次仿真20秒 } from Control_Exp1001.demo.thickener.common import exp_name exp_name.set_exp_name('Noise_HDP_actor_lr') EXP_NAME = exp_name.get_exp_name() img_path = os.path.join('../images', EXP_NAME) if not os.path.exists(img_path): os.mkdir(img_path) def new_hdp(Na): predict_round = 800 gamma = 0.4 replay_hdp = ReplayBuffer(capacity=2) env_HDP = Thickener( noise_p=0.01, noise_in=True, ) exploration = No_Exploration()
penalty_para = { #"weight_matrix": [0, 0.002], "weight_matrix": [0, 0.004], "S": [0.0001, 0.0008], #"S": [0.0003, 0.0024], #"S": [0.0000, 0.000], } thickner_para = { "dt": 1, "noise_in": False, "noise_p": 0.002, "noise_type": 1, 'time_length': 20, # 浓密机每次仿真20秒 } from Control_Exp1001.demo.thickener.common import exp_name exp_name.set_exp_name('VIubtimes') EXP_NAME = exp_name.get_exp_name() img_path = os.path.join('../images', EXP_NAME) if not os.path.exists(img_path): os.mkdir(img_path) def new_vi_ub(find_times=20, find_lr=0.05): capacity = 2 predict_round = 3000 u_optim = 'SGD' replay_vi = ReplayBuffer(capacity=capacity) env_VI = Thickener( noise_p=0.03, noise_in=True, )
#"weight_matrix": [0, 0.002], "weight_matrix": [0, 0.004], "S": [0.0001, 0.0008], #"S": [0.0003, 0.0024], #"S": [0.0000, 0.000], } thickner_para = { "dt": 1, "noise_in": False, "noise_p": 0.002, "noise_type": 1, 'time_length': 20, # 浓密机每次仿真20秒 } from Control_Exp1001.demo.thickener.common import exp_name exp_name.set_exp_name('HDP_actor_lr') EXP_NAME = exp_name.get_exp_name() def new_hdp(Na): predict_round = 800 gamma = 0.4 replay_hdp = ReplayBuffer(capacity=2) env_HDP = Thickener( noise_p=0.01, noise_in=True, ) exploration = No_Exploration() print('make new hdp controller') hdp = HDP(