def run_vi( rounds=1000, seed=random.randint(0, 1000000), name='VI', capacity=2, predict_round=3000, u_optim='adam', ): print('seed :', seed) torch.manual_seed(seed) vi_para = {'gamma': 0.2} vi = new_vi() penalty = Quadratic(**penalty_para) env_vi = Thickener( penalty_calculator=penalty, **thickner_para, ) res1 = OneRoundExp(controller=vi, env=env_vi, max_step=rounds, exp_name=name).run() print(name, ':', vi.u_iter_times * 1.0 / rounds) return res1
def run_dhp_vi( rounds=1000, seed=random.randint(0, 1000000), name='DHPVI', capacity=2, predict_round=3000, u_optim='adam', ): print('seed :', seed) torch.manual_seed(seed) dhp_vi_para = { #'gamma': 0.2 } dhp_vi = new_dhp_vi() specific_penalty_para = copy.deepcopy(penalty_para) specific_penalty_para['S'] = [0.0001, 0.0008] penalty = Quadratic(**specific_penalty_para) env_dhp_vi = Thickener( penalty_calculator=penalty, **thickner_para, ) res1 = OneRoundExp(controller=dhp_vi, env=env_dhp_vi, max_step=rounds, exp_name=name).run() return res1
def run_hdp(rounds=1000,seed=random.randint(0,1000000),name='HDP', predict_round=800): print('seed :',seed) hdp_para = { 'gamma':0.2 } hdp = new_hdp() penalty = Quadratic(**penalty_para) env_hdp = Thickener( penalty_calculator=penalty, **thickner_para, ) res1 = OneRoundExp(controller=hdp, env=env_hdp,max_step=rounds, exp_name=name).run() return res1
def run_dhp(rounds=800,seed=random.randint(0,1000000),name='DHP',capacity=2, predict_round=3000,u_optim='adam',): print('seed :',seed) torch.manual_seed(seed) dhp = new_dhp() penalty = Quadratic(**penalty_para) env_dhp = Thickener( penalty_calculator=penalty, **thickner_para, ) res1 = OneRoundExp(controller=dhp, env=env_dhp,max_step=rounds, exp_name=name).run() return res1
def run_adhdp(rounds=1000, seed=random.randint(0, 1000000), name='ADHDP', predict_round=800, random_act=False): print('seed :', seed) torch.manual_seed(seed) random.seed(seed) np.random.seed(seed) adhdp = new_adhdp(random_act=random_act) penalty = Quadratic(**penalty_para) env_hdp = Thickener( penalty_calculator=penalty, random_seed=seed, **thickner_para, ) res1 = OneRoundExp(controller=adhdp, env=env_hdp, max_step=rounds, exp_name=name).run() return res1