arrival.clear() depart.clear() distance.clear() demand.clear() charge_power=np.empty([1,1]) installed_chargers.clear() installed_cost.clear() TFC=np.empty([1,1]) EV_samples.clear() list_data.clear() #create a scenario data arrival, depart, distance, demand, charge_power,installed_chargers,\ installed_cost,TFC, EV_samples = dataFile(number_of_EVs, number_of_timeslot, Charger_Type, charger_cost, slot) # arrival, # depart, # distance, # demand, # charge_power, # installed_chargers, # installed_cost, # TFC, # EV_samples) """ Calling the model creator function based on generated data
number_of_scenarios = 100 number_of_timeslot = 24 * slot Charger_Type = [4, 8, 19] #type of chargers to install charger_cost = [1000, 1500, 2200] #cost of installation """ Initializing required data for creating scenario files """ #Find the max number of requiredd chargers as CS capacity count = np.zeros(len(Charger_Type), dtype=np.int8) for i in range(500): installed_chargers = dataFile(number_of_EVs, number_of_timeslot, Charger_Type, charger_cost, slot) for i in range(len(Charger_Type)): max_i = installed_chargers.count(Charger_Type[i]) if count[i] < max_i: count[i] = max_i #using next two variables for creating scenarios data files number_of_Chargers = sum(count) chargers_cost = [] installed_chargers = [] for i in range(len(Charger_Type)): for j in range(count[i]): chargers_cost.append(charger_cost[i]) installed_chargers.append(Charger_Type[i])