示例#1
0
    def run(self):

        population = []
        best_genome = None
        data = []

        for _ in range(population_total):
            genome_dna = generate(problem_grid)
            population.append(Genome(genome_dna))

        for i in range(simulations):
            population_fitness = 0

            for genome in population:
                genome.fitness()
                population_fitness += genome.getFitness()

            sorted_population = population.copy()
            best_genome = max(population, key=operator.attrgetter('fit'))
            best_fitness = round(1 / best_genome.getFitness())
            data.append(best_fitness)

            if i % 1000 == 0:
                self.show(i, best_genome)

            if best_fitness <= limit:
                print('DONE\n')
            population.clear()
            population.append(best_genome)

            while len(population) < population_total:

                new_genome = tournamentSelection(sorted_population)
                option_2 = tournamentSelection(sorted_population)

                if npR.uniform() < crossover_rate:
                    option_3 = tournamentSelection(sorted_population)
                    dna_1 = crossover(new_genome, option_2, option_3)
                    new_genome = Genome(dna_1)

                if npR.uniform() < mutation_rate:
                    new_genome.mutateSell(problem_grid)

                population.append(new_genome)

        self.show(i, best_genome)
        return data
示例#2
0
    def run(self):
        for _ in range(population_total):
            scramble = shuffle(key)
            self.population.append(Genome(scramble))

        for _ in range(100000):
            #print('GENERATION :', i, round(1/population[0].getFitness()))
            population_fitness = 0

            for genome in self.population:
                genome.fitness(row_score, col_score)
                population_fitness += genome.getFitness()

            for genome in self.population:
                genome.setFitness2Population(population_fitness)

            sorted_population = sorted(
                self.population, key=operator.attrgetter('fitness_ratio'))
            sorted_population.reverse()
            best = sorted_population[0]
            sorted_population.append(best)
            if 1 / best.getFitness() <= 10:
                break
            self.population.clear()

            for _ in range(population_total - 1):

                new_genome = rouletteSelection(sorted_population)
                option_2 = rouletteSelection(sorted_population)

                if npR.uniform() < crossover_rate:
                    new_genome = Genome(crossover(new_genome, option_2))

                if npR.uniform() < mutation_rate:
                    new_genome.mutate()

                self.population.append(new_genome)
pop = geneEncoding(pop_size, chrom_length)  # 初始化二进制种群基因编码

for i in range(iterations):
    # print('NO. ', i + 1)
    fit_value = calobjValue(pop, chrom_length, max_value)  # 适应度计算
    # print('初始', fit_value)
    # fit_value = calfitValue(obj_value)  # 筛选淘汰
    best_indiviual, best_fit = best(pop, fit_value)  # 最优解集
    best_indiviual_ten = decoding(best_indiviual, chrom_length,
                                  max_value)  # 最优解集进制转换
    results.append([best_indiviual_ten, best_fit])
    pop, fit_value = selection(pop, fit_value, pop_size, chrom_length,
                               max_value)
    # print('选择', fit_value)
    pop, fit_value = crossover(pop, pc, fit_value, chrom_length, max_value)
    # print('交叉', fit_value)
    pop, fit_value = mutation(pop, pm, chrom_length, max_value)
    # print('变异', fit_value)

print(results[iterations - 1][1])

X = []
Y = []
for i in range(iterations):
    X.append(i)
    Y.append(results[i][1])

plt.plot(X, Y)
plt.show()
示例#4
0
        sorted_population = population.copy()
        best_genome = max(population, key=operator.attrgetter('fit'))

        if i%1000 == 0:
            show(i)
            image_output(puzzle_img, best_genome.getDNA(), digits)
            
        if round(1/best_genome.getFitness()) <= 1:
            print('Done')
            break
        population.clear()
        population.append(best_genome)
        
        while len(population) < population_total:

            new_genome = tournamentSelection(sorted_population)
            option_2 = tournamentSelection(sorted_population)

            if npR.uniform() < crossover_rate:
                option_3 = tournamentSelection(sorted_population)
                dna_1 = crossover(new_genome, option_2, option_3)
                new_genome = Genome(dna_1)

            if npR.uniform() < mutation_rate:
                new_genome.mutate(problem_grid)

            population.append(new_genome)
        
    show(i)
    image_output(puzzle_img, best_genome.getDNA(), digits)
     
示例#5
0
def SPSOGA(Task):
    # Initial popution
    particle_swarm_server = []
    particle_swarm_order = []
    for i in range(numberOfParticle):
        particle_server = []
        particle_order = []
        for j in range(len(Task.subTask)):
            particle_server.append(random.randint(0, numberOfServer - 1))
            particle_order.append(j)
        random.shuffle(particle_order)
        particle_swarm_server.append(particle_server)
        particle_swarm_order.append(particle_order)
    # Initial pbest
    pbest_particles_server = particle_swarm_server
    pbest_particles_order = particle_swarm_order
    pbest_energy_cons = []
    for i in range(numberOfParticle):
        pbest_energy_cons.append(
            particle2energy(Task, pbest_particles_server[i],
                            pbest_particles_order[i]))
    # Initial gbest
    gbest_paticle_server = []
    gbest_paticle_order = []
    gbest_energy_cons = 9999999
    for i in range(len(pbest_particles_server)):
        energy_cons = particle2energy(Task, pbest_particles_server[i],
                                      pbest_particles_order[i])
        if energy_cons < gbest_energy_cons:
            gbest_energy_cons = energy_cons
            gbest_paticle_server = pbest_particles_server[i]
            gbest_paticle_order = pbest_particles_order[i]

    for i in range(iterations_max):
        # inertia weight
        w = 0.5
        for j in range(numberOfParticle):
            # inertia
            particle_swarm_server[j], particle_swarm_order[j] = mutation(
                particle_swarm_server[j], particle_swarm_order[j], w)
            # personal cognition
            c_1 = random.random()
            particle_swarm_server[j], particle_swarm_order[j] = crossover(
                particle_swarm_server[j], particle_swarm_order[j],
                pbest_particles_server[j], pbest_particles_order[j], c_1)
            # social cognition
            c_2 = random.random()
            particle_swarm_server[j], particle_swarm_order[j] = crossover(
                particle_swarm_server[j], particle_swarm_order[j],
                gbest_paticle_server, gbest_paticle_order, c_2)
            # update pbest
            energy_cons = particle2energy(Task, pbest_particles_server[j],
                                          pbest_particles_order[j])
            if energy_cons < pbest_energy_cons[j]:
                pbest_energy_cons[j] = energy_cons
                pbest_particles_server = pbest_particles_server[j]
                pbest_particles_order = pbest_particles_order[j]
                # update gbest
                if energy_cons < gbest_energy_cons:
                    gbest_energy_cons = energy_cons
                    gbest_paticle_server = pbest_particles_server[j]
                    gbest_paticle_order = pbest_particles_order[j]
    return gbest_energy_cons
示例#6
0
Ld = float(Ud) * (-1)
start = time.time()
# Initial 
populationDataOriginal = np.zeros((int(population), int(dim)))
for eachpopulationData_colum in range(int(population)):
    for eachpopulationData_row in range(int(dim)):
        r = rand.random()
        populationDataOriginal[eachpopulationData_colum][eachpopulationData_row] = ((float(Ud) - Ld) * r) + Ld
populationData = populationDataOriginal.copy() # copy populationDataOriginal to populationData
best = 99999
for eachiteration in range(int(iteration)):
	# Mutation
	mutationData = mutation(populationData, float(F))

	# Crossover
	crossoverData = crossover(populationDataOriginal, mutationData, float(CR))

	# Selection
	selectionData = selection(populationDataOriginal, crossoverData, int(dim))			
	count = []
	for i in range(np.size(selectionData, 0)):
		count.append(fitness(selectionData[i][:], int(dim)))
		if count[i] < best:
			best = count[i]
	print(eachiteration, best)
	# reset
	populationDataOriginal = selectionData.copy()
	populationData = selectionData.copy()
end = time.time()
print(end-start)
示例#7
0
        # sorted_population.reverse()
        sorted_population = population.copy()
        best_genome = max(population, key=operator.attrgetter('fit'))
        if i % 10000 == 0:
            print('Gen:', i, '--> ', round(1 / best_genome.getFitness()))
            show()
        if round(1 / best_genome.getFitness()) <= 200:
            print('Done')
            break
        population.clear()
        population.append(best_genome)

        while len(population) < population_total:

            new_genome = tournamentSelection(sorted_population)
            option_2 = tournamentSelection(sorted_population)

            if npR.uniform() < crossover_rate:
                dna_1, dna_2 = crossover(new_genome, option_2)
                new_genome = Genome(dna_1)
                new_genome_2 = Genome(dna_2)
                population.append(new_genome_2)

            if npR.uniform() < mutation_rate:
                new_genome.mutate()

            population.append(new_genome)

    show()

print('Complete')