def test_generate_safe_prime(self): p = generate_probable_safe_prime(exact_bits=161) self.assertEqual(p.size_in_bits(), 161)
def generate(bits, randfunc): """Randomly generate a fresh, new ElGamal key. The key will be safe for use for both encryption and signature (although it should be used for **only one** purpose). Args: bits (int): Key length, or size (in bits) of the modulus *p*. The recommended value is 2048. randfunc (callable): Random number generation function; it should accept a single integer *N* and return a string of random *N* random bytes. Return: an :class:`ElGamalKey` object """ obj = ElGamalKey() # Generate a safe prime p # See Algorithm 4.86 in Handbook of Applied Cryptography obj.p = generate_probable_safe_prime(exact_bits=bits, randfunc=randfunc) q = (obj.p - 1) >> 1 # Generate generator g # See Algorithm 4.80 in Handbook of Applied Cryptography # Note that the order of the group is n=p-1=2q, where q is prime while 1: # We must avoid g=2 because of Bleichenbacher's attack described # in "Generating ElGamal signatures without knowning the secret key", # 1996 # obj.g = Integer.random_range(min_inclusive=3, max_exclusive=obj.p, randfunc=randfunc) safe = 1 if pow(obj.g, 2, obj.p) == 1: safe = 0 if safe and pow(obj.g, q, obj.p) == 1: safe = 0 # Discard g if it divides p-1 because of the attack described # in Note 11.67 (iii) in HAC if safe and (obj.p - 1) % obj.g == 0: safe = 0 # g^{-1} must not divide p-1 because of Khadir's attack # described in "Conditions of the generator for forging ElGamal # signature", 2011 ginv = obj.g.inverse(obj.p) if safe and (obj.p - 1) % ginv == 0: safe = 0 if safe: break # Generate private key x obj.x = Integer.random_range(min_inclusive=2, max_exclusive=obj.p - 1, randfunc=randfunc) # Generate public key y obj.y = pow(obj.g, obj.x, obj.p) return obj
def generate(bits, randfunc): """Randomly generate a fresh, new ElGamal key. The key will be safe for use for both encryption and signature (although it should be used for **only one** purpose). Args: bits (int): Key length, or size (in bits) of the modulus *p*. The recommended value is 2048. randfunc (callable): Random number generation function; it should accept a single integer *N* and return a string of random *N* random bytes. Return: an :class:`ElGamalKey` object """ obj=ElGamalKey() # Generate a safe prime p # See Algorithm 4.86 in Handbook of Applied Cryptography obj.p = generate_probable_safe_prime(exact_bits=bits, randfunc=randfunc) q = (obj.p - 1) >> 1 # Generate generator g while 1: # Choose a square residue; it will generate a cyclic group of order q. obj.g = pow(Integer.random_range(min_inclusive=2, max_exclusive=obj.p, randfunc=randfunc), 2, obj.p) # We must avoid g=2 because of Bleichenbacher's attack described # in "Generating ElGamal signatures without knowning the secret key", # 1996 if obj.g in (1, 2): continue # Discard g if it divides p-1 because of the attack described # in Note 11.67 (iii) in HAC if (obj.p - 1) % obj.g == 0: continue # g^{-1} must not divide p-1 because of Khadir's attack # described in "Conditions of the generator for forging ElGamal # signature", 2011 ginv = obj.g.inverse(obj.p) if (obj.p - 1) % ginv == 0: continue # Found break # Generate private key x obj.x = Integer.random_range(min_inclusive=2, max_exclusive=obj.p-1, randfunc=randfunc) # Generate public key y obj.y = pow(obj.g, obj.x, obj.p) return obj
def generate(bits, randfunc): """Randomly generate a fresh, new ElGamal key. The key will be safe for use for both encryption and signature (although it should be used for **only one** purpose). :Parameters: bits : int Key length, or size (in bits) of the modulus *p*. Recommended value is 2048. randfunc : callable Random number generation function; it should accept a single integer N and return a string of random data N bytes long. :attention: You should always use a cryptographically secure random number generator, such as the one defined in the ``Cryptodome.Random`` module; **don't** just use the current time and the ``random`` module. :Return: An ElGamal key object (`ElGamalKey`). """ obj=ElGamalKey() # Generate a safe prime p # See Algorithm 4.86 in Handbook of Applied Cryptography obj.p = generate_probable_safe_prime(exact_bits=bits, randfunc=randfunc) q = (obj.p - 1) >> 1 # Generate generator g # See Algorithm 4.80 in Handbook of Applied Cryptography # Note that the order of the group is n=p-1=2q, where q is prime while 1: # We must avoid g=2 because of Bleichenbacher's attack described # in "Generating ElGamal signatures without knowning the secret key", # 1996 # obj.g = Integer.random_range(min_inclusive=3, max_exclusive=obj.p, randfunc=randfunc) safe = 1 if pow(obj.g, 2, obj.p)==1: safe=0 if safe and pow(obj.g, q, obj.p)==1: safe=0 # Discard g if it divides p-1 because of the attack described # in Note 11.67 (iii) in HAC if safe and (obj.p-1) % obj.g == 0: safe=0 # g^{-1} must not divide p-1 because of Khadir's attack # described in "Conditions of the generator for forging ElGamal # signature", 2011 ginv = obj.g.inverse(obj.p) if safe and (obj.p-1) % ginv == 0: safe=0 if safe: break # Generate private key x obj.x = Integer.random_range(min_inclusive=2, max_exclusive=obj.p-1, randfunc=randfunc) # Generate public key y obj.y = pow(obj.g, obj.x, obj.p) return obj