def test_generate_safe_prime(self):
     p = generate_probable_safe_prime(exact_bits=161)
     self.assertEqual(p.size_in_bits(), 161)
示例#2
0
def generate(bits, randfunc):
    """Randomly generate a fresh, new ElGamal key.

    The key will be safe for use for both encryption and signature
    (although it should be used for **only one** purpose).

    Args:
      bits (int):
        Key length, or size (in bits) of the modulus *p*.
        The recommended value is 2048.
      randfunc (callable):
        Random number generation function; it should accept
        a single integer *N* and return a string of random
        *N* random bytes.

    Return:
        an :class:`ElGamalKey` object
    """

    obj = ElGamalKey()

    # Generate a safe prime p
    # See Algorithm 4.86 in Handbook of Applied Cryptography
    obj.p = generate_probable_safe_prime(exact_bits=bits, randfunc=randfunc)
    q = (obj.p - 1) >> 1

    # Generate generator g
    # See Algorithm 4.80 in Handbook of Applied Cryptography
    # Note that the order of the group is n=p-1=2q, where q is prime
    while 1:
        # We must avoid g=2 because of Bleichenbacher's attack described
        # in "Generating ElGamal signatures without knowning the secret key",
        # 1996
        #
        obj.g = Integer.random_range(min_inclusive=3,
                                     max_exclusive=obj.p,
                                     randfunc=randfunc)
        safe = 1
        if pow(obj.g, 2, obj.p) == 1:
            safe = 0
        if safe and pow(obj.g, q, obj.p) == 1:
            safe = 0
        # Discard g if it divides p-1 because of the attack described
        # in Note 11.67 (iii) in HAC
        if safe and (obj.p - 1) % obj.g == 0:
            safe = 0
        # g^{-1} must not divide p-1 because of Khadir's attack
        # described in "Conditions of the generator for forging ElGamal
        # signature", 2011
        ginv = obj.g.inverse(obj.p)
        if safe and (obj.p - 1) % ginv == 0:
            safe = 0
        if safe:
            break
    # Generate private key x
    obj.x = Integer.random_range(min_inclusive=2,
                                 max_exclusive=obj.p - 1,
                                 randfunc=randfunc)
    # Generate public key y
    obj.y = pow(obj.g, obj.x, obj.p)
    return obj
示例#3
0
def generate(bits, randfunc):
    """Randomly generate a fresh, new ElGamal key.

    The key will be safe for use for both encryption and signature
    (although it should be used for **only one** purpose).

    Args:
      bits (int):
        Key length, or size (in bits) of the modulus *p*.
        The recommended value is 2048.
      randfunc (callable):
        Random number generation function; it should accept
        a single integer *N* and return a string of random
        *N* random bytes.

    Return:
        an :class:`ElGamalKey` object
    """

    obj=ElGamalKey()

    # Generate a safe prime p
    # See Algorithm 4.86 in Handbook of Applied Cryptography
    obj.p = generate_probable_safe_prime(exact_bits=bits, randfunc=randfunc)
    q = (obj.p - 1) >> 1

    # Generate generator g
    while 1:
        # Choose a square residue; it will generate a cyclic group of order q.
        obj.g = pow(Integer.random_range(min_inclusive=2,
                                     max_exclusive=obj.p,
                                     randfunc=randfunc), 2, obj.p)

        # We must avoid g=2 because of Bleichenbacher's attack described
        # in "Generating ElGamal signatures without knowning the secret key",
        # 1996
        if obj.g in (1, 2):
            continue

        # Discard g if it divides p-1 because of the attack described
        # in Note 11.67 (iii) in HAC
        if (obj.p - 1) % obj.g == 0:
            continue

        # g^{-1} must not divide p-1 because of Khadir's attack
        # described in "Conditions of the generator for forging ElGamal
        # signature", 2011
        ginv = obj.g.inverse(obj.p)
        if (obj.p - 1) % ginv == 0:
            continue

        # Found
        break

    # Generate private key x
    obj.x = Integer.random_range(min_inclusive=2,
                                 max_exclusive=obj.p-1,
                                 randfunc=randfunc)
    # Generate public key y
    obj.y = pow(obj.g, obj.x, obj.p)
    return obj
示例#4
0
 def test_generate_safe_prime(self):
     p = generate_probable_safe_prime(exact_bits=161)
     self.assertEqual(p.size_in_bits(), 161)
def generate(bits, randfunc):
    """Randomly generate a fresh, new ElGamal key.

    The key will be safe for use for both encryption and signature
    (although it should be used for **only one** purpose).

    :Parameters:
        bits : int
            Key length, or size (in bits) of the modulus *p*.
            Recommended value is 2048.
        randfunc : callable
            Random number generation function; it should accept
            a single integer N and return a string of random data
            N bytes long.

    :attention: You should always use a cryptographically secure random number generator,
        such as the one defined in the ``Cryptodome.Random`` module; **don't** just use the
        current time and the ``random`` module.

    :Return: An ElGamal key object (`ElGamalKey`).
    """
    obj=ElGamalKey()
    # Generate a safe prime p
    # See Algorithm 4.86 in Handbook of Applied Cryptography

    obj.p = generate_probable_safe_prime(exact_bits=bits, randfunc=randfunc)
    q = (obj.p - 1) >> 1

    # Generate generator g
    # See Algorithm 4.80 in Handbook of Applied Cryptography
    # Note that the order of the group is n=p-1=2q, where q is prime
    while 1:
        # We must avoid g=2 because of Bleichenbacher's attack described
        # in "Generating ElGamal signatures without knowning the secret key",
        # 1996
        #
        obj.g = Integer.random_range(min_inclusive=3,
                                     max_exclusive=obj.p,
                                     randfunc=randfunc)
        safe = 1
        if pow(obj.g, 2, obj.p)==1:
            safe=0
        if safe and pow(obj.g, q, obj.p)==1:
            safe=0
        # Discard g if it divides p-1 because of the attack described
        # in Note 11.67 (iii) in HAC
        if safe and (obj.p-1) % obj.g == 0:
            safe=0
        # g^{-1} must not divide p-1 because of Khadir's attack
        # described in "Conditions of the generator for forging ElGamal
        # signature", 2011
        ginv = obj.g.inverse(obj.p)
        if safe and (obj.p-1) % ginv == 0:
            safe=0
        if safe:
            break
    # Generate private key x
    obj.x = Integer.random_range(min_inclusive=2,
                                 max_exclusive=obj.p-1,
                                 randfunc=randfunc)
    # Generate public key y
    obj.y = pow(obj.g, obj.x, obj.p)
    return obj