def test_fit_multi_ion_and_spectra(self):
        from CrystalField.fitting import makeWorkspace
        from CrystalField import CrystalField, CrystalFieldFit
        from mantid.simpleapi import CalculateChiSquared

        params = {'B20': 0.37737, 'B22': 3.9770, 'B40': -0.031787, 'B42': -0.11611, 'B44': -0.12544,
                  'Temperature': [44.0, 50.0], 'FWHM': [1.1, 0.9]}
        cf1 = CrystalField('Ce', 'C2v', **params)
        cf2 = CrystalField('Pr', 'C2v', **params)
        cf = cf1 + cf2
        r = [0.0, 1.45, 2.4, 3.0, 3.85]
        ws1 = makeWorkspace(*cf.getSpectrum(0, r))
        ws2 = makeWorkspace(*cf.getSpectrum(1, r))

        params = {'ion0.B20': 0.37737, 'ion0.B22': 3.9770, 'ion0.B40': -0.031787, 'ion0.B42': -0.11611,
                  'ion0.B44': -0.12544, 'ion1.B20': 0.37737, 'ion1.B22': 3.9770, 'ion1.B40': -0.031787,
                  'ion1.B42': -0.11611, 'ion1.B44': -0.12544}
        cf = CrystalFieldMultiSite(Ions=['Ce', 'Pr'], Symmetries=['C2v', 'C2v'], Temperatures=[44.0, 50.0],
                                    FWHM=[1.0, 1.0], ToleranceIntensity=6.0, ToleranceEnergy=1.0,  FixAllPeaks=True,
                                   parameters=params)

        cf.fix('ion0.BmolX', 'ion0.BmolY', 'ion0.BmolZ', 'ion0.BextX', 'ion0.BextY', 'ion0.BextZ', 'ion0.B40',
               'ion0.B42', 'ion0.B44', 'ion0.B60', 'ion0.B62', 'ion0.B64', 'ion0.B66', 'ion0.IntensityScaling',
               'ion1.BmolX', 'ion1.BmolY', 'ion1.BmolZ', 'ion1.BextX', 'ion1.BextY', 'ion1.BextZ', 'ion1.B40',
               'ion1.B42', 'ion1.B44', 'ion1.B60', 'ion1.B62', 'ion1.B64', 'ion1.B66', 'ion1.IntensityScaling',
               'sp0.IntensityScaling', 'sp1.IntensityScaling')

        chi2 = CalculateChiSquared(str(cf.function), InputWorkspace=ws1, InputWorkspace_1=ws2)[1]

        fit = CrystalFieldFit(Model=cf, InputWorkspace=[ws1, ws2], MaxIterations=10)
        fit.fit()

        self.assertTrue(cf.chi2 > 0.0)
        self.assertTrue(cf.chi2 < chi2)
示例#2
0
    def test_fit_multi_ion_and_spectra(self):
        from CrystalField.fitting import makeWorkspace
        from CrystalField import CrystalField, CrystalFieldFit
        from mantid.simpleapi import CalculateChiSquared

        params = {'B20': 0.37737, 'B22': 3.9770, 'B40': -0.031787, 'B42': -0.11611, 'B44': -0.12544,
                  'Temperature': [44.0, 50.0], 'FWHM': [1.1, 0.9]}
        cf1 = CrystalField('Ce', 'C2v', **params)
        cf2 = CrystalField('Pr', 'C2v', **params)
        cf = cf1 + cf2
        r = [0.0, 1.45, 2.4, 3.0, 3.85]
        ws1 = makeWorkspace(*cf.getSpectrum(0, r))
        ws2 = makeWorkspace(*cf.getSpectrum(1, r))

        params = {'ion0.B20': 0.37737, 'ion0.B22': 3.9770, 'ion0.B40': -0.031787, 'ion0.B42': -0.11611,
                  'ion0.B44': -0.12544, 'ion1.B20': 0.37737, 'ion1.B22': 3.9770, 'ion1.B40': -0.031787,
                  'ion1.B42': -0.11611, 'ion1.B44': -0.12544}
        cf = CrystalFieldMultiSite(Ions=['Ce', 'Pr'], Symmetries=['C2v', 'C2v'], Temperatures=[44.0, 50.0],
                                    FWHM=[1.0, 1.0], ToleranceIntensity=6.0, ToleranceEnergy=1.0,  FixAllPeaks=True,
                                   parameters=params)

        cf.fix('ion0.BmolX', 'ion0.BmolY', 'ion0.BmolZ', 'ion0.BextX', 'ion0.BextY', 'ion0.BextZ', 'ion0.B40',
               'ion0.B42', 'ion0.B44', 'ion0.B60', 'ion0.B62', 'ion0.B64', 'ion0.B66', 'ion0.IntensityScaling',
               'ion1.BmolX', 'ion1.BmolY', 'ion1.BmolZ', 'ion1.BextX', 'ion1.BextY', 'ion1.BextZ', 'ion1.B40',
               'ion1.B42', 'ion1.B44', 'ion1.B60', 'ion1.B62', 'ion1.B64', 'ion1.B66', 'ion1.IntensityScaling',
               'sp0.IntensityScaling', 'sp1.IntensityScaling')

        chi2 = CalculateChiSquared(str(cf.function), InputWorkspace=ws1, InputWorkspace_1=ws2)[1]

        fit = CrystalFieldFit(Model=cf, InputWorkspace=[ws1, ws2], MaxIterations=10)
        fit.fit()

        self.assertTrue(cf.chi2 > 0.0)
        self.assertTrue(cf.chi2 < chi2)
示例#3
0
    def test_fit_multi_ion_single_spectrum(self):

        from CrystalField.fitting import makeWorkspace
        from CrystalField import CrystalField, CrystalFieldFit
        from mantid.simpleapi import CalculateChiSquared

        params = {
            'B20': 0.37737,
            'B22': 3.9770,
            'B40': -0.031787,
            'B42': -0.11611,
            'B44': -0.12544,
            'Temperature': 44.0,
            'FWHM': 1.1
        }
        cf1 = CrystalField('Ce', 'C2v', **params)
        cf2 = CrystalField('Pr', 'C2v', **params)
        cf = cf1 + cf2
        r = [0.0, 1.45, 2.4, 3.0, 3.85]
        x, y = cf.getSpectrum(r)
        ws = makeWorkspace(x, y)

        params = {
            'ion0.B20': 0.37737,
            'ion0.B22': 3.9770,
            'ion0.B40': -0.031787,
            'ion0.B42': -0.11611,
            'ion0.B44': -0.12544,
            'ion1.B20': 0.37737,
            'ion1.B22': 3.9770,
            'ion1.B40': -0.031787,
            'ion1.B42': -0.11611,
            'ion1.B44': -0.12544
        }
        cf = CrystalFieldMultiSite(Ions=['Ce', 'Pr'],
                                   Symmetries=['C2v', 'C2v'],
                                   Temperatures=[44.0],
                                   FWHM=[1.1],
                                   ToleranceIntensity=6.0,
                                   ToleranceEnergy=1.0,
                                   FixAllPeaks=True,
                                   parameters=params)

        cf.fix('ion0.BmolX', 'ion0.BmolY', 'ion0.BmolZ', 'ion0.BextX',
               'ion0.BextY', 'ion0.BextZ', 'ion0.B40', 'ion0.B42', 'ion0.B44',
               'ion0.B60', 'ion0.B62', 'ion0.B64', 'ion0.B66',
               'ion0.IntensityScaling', 'ion1.BmolX', 'ion1.BmolY',
               'ion1.BmolZ', 'ion1.BextX', 'ion1.BextY', 'ion1.BextZ',
               'ion1.B40', 'ion1.B42', 'ion1.B44', 'ion1.B60', 'ion1.B62',
               'ion1.B64', 'ion1.B66', 'ion1.IntensityScaling')

        chi2 = CalculateChiSquared(cf.makeSpectrumFunction(),
                                   InputWorkspace=ws)[1]

        fit = CrystalFieldFit(Model=cf, InputWorkspace=ws, MaxIterations=10)
        fit.fit()

        self.assertGreater(cf.chi2, 0.0)
        self.assertLess(cf.chi2, chi2)
示例#4
0
                  Temperature=5,
                  FWHM=1,
                  B20=0.19,
                  B22=0.11,
                  B40=-0.0004,
                  B42=-0.002,
                  B44=-0.012,
                  B60=5.e-05,
                  B62=0.00054,
                  B64=-0.0006,
                  B66=0.0008)
cf.PeakShape = 'Lorentzian'
cf.IntensityScaling = 2  # Scale factor if data is not in absolute units (mbarn/sr/f.u./meV), will be fitted.

# Runs the fit
fit = CrystalFieldFit(Model=cf, InputWorkspace=data_ws1, MaxIterations=200)
fit.fit()

# Plots the data and print fitted parameters
l = plotSpectrum('fit_Workspace', [0, 1, 2], error_bars=False)
l.activeLayer().setAxisScale(Layer.Left, 0, 100)
l.activeLayer().setAxisScale(Layer.Bottom, -10, 30)

for parnames in [
        'B20', 'B22', 'B40', 'B42', 'B44', 'B60', 'B62', 'B64', 'B66'
]:
    print parnames + ' = ' + str(fit.model[parnames]) + ' meV'

table = mtd['fit_Parameters']
print 'Cost function value = ' + str(table.row(table.rowCount() - 1)['Value'])
示例#5
0
    def runTest(self):
        from CrystalField import CrystalField, CrystalFieldFit, CrystalFieldMultiSite, Background, Function, ResolutionModel

        cf = CrystalField('Ce', 'C2v')
        cf = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770)
        cf['B40'] = -0.031
        b = cf['B40']

        # Calculate and return the Hamiltonian matrix as a 2D numpy array.
        h = cf.getHamiltonian()
        print(h)
        # Calculate and return the eigenvalues of the Hamiltonian as a 1D numpy array.
        e = cf.getEigenvalues()
        print(e)
        # Calculate and return the eigenvectors of the Hamiltonian as a 2D numpy array.
        w = cf.getEigenvectors()
        print(w)
        # Using the keyword argument
        cf = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770, Temperature=44)
        # Using the property
        cf.Temperature = 44

        print(cf.getPeakList())
        #[[  0.00000000e+00   2.44006198e+01   4.24977124e+01   1.80970926e+01 -2.44006198e+01]
        # [  2.16711565e+02   8.83098530e+01   5.04430056e+00   1.71153708e-01  1.41609425e-01]]
        cf.ToleranceIntensity = 1
        print(cf.getPeakList())
        #[[   0.           24.40061976   42.49771237]
        # [ 216.71156467   88.30985303    5.04430056]]
        cf.PeakShape = 'Gaussian'
        cf.FWHM = 0.9
        sp = cf.getSpectrum()
        print(cf.function)
        CrystalField_Ce = CreateWorkspace(*sp)
        print(CrystalField_Ce)

        # If the peak shape is Gaussian
        cf.peaks.param[1]['Sigma'] = 2.0
        cf.peaks.param[2]['Sigma'] = 0.01

        # If the peak shape is Lorentzian
        cf.PeakShape = 'Lorentzian'
        cf.peaks.param[1]['FWHM'] = 2.0
        cf.peaks.param[2]['FWHM'] = 0.01

        cf = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770, B40=-0.031787, B42=-0.11611, B44=-0.12544,
                          Temperature=44.0, FWHM=1.1)
        cf.background = Background(peak=Function('Gaussian', Height=10, Sigma=1),
                                   background=Function('LinearBackground', A0=1.0, A1=0.01))
        h = cf.background.peak.param['Height']
        a1 = cf.background.background.param['A1']
        print(h)
        print(a1)

        cf.ties(B20=1.0, B40='B20/2')
        cf.constraints('1 < B22 <= 2', 'B22 < 4')

        print(cf.function[1].getTies())
        print(cf.function[1].getConstraints())

        cf.background.peak.ties(Height=10.1)
        cf.background.peak.constraints('Sigma > 0')
        cf.background.background.ties(A0=0.1)
        cf.background.background.constraints('A1 > 0')

        print(cf.function[0][0].getConstraints())
        print(cf.function[0][1].getConstraints())
        print(cf.function.getTies())
        print(cf.function.getConstraints())

        cf.peaks.ties({'f2.FWHM': '2*f1.FWHM', 'f3.FWHM': '2*f2.FWHM'})
        cf.peaks.constraints('f0.FWHM < 2.2', 'f1.FWHM >= 0.1')

        cf.PeakShape = 'Gaussian'
        cf.peaks.tieAll('Sigma=0.1', 3)
        cf.peaks.constrainAll('0 < Sigma < 0.1', 4)
        cf.peaks.tieAll('Sigma=f0.Sigma', 1, 3)
        cf.peaks.ties({'f1.Sigma': 'f0.Sigma', 'f2.Sigma': 'f0.Sigma', 'f3.Sigma': 'f0.Sigma'})

        rm = ResolutionModel(([1, 2, 3, 100], [0.1, 0.3, 0.35, 2.1]))
        cf = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770, Temperature=44.0, ResolutionModel=rm)

        rm = ResolutionModel(self.my_func, xstart=0.0, xend=24.0, accuracy=0.01)
        cf = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770, Temperature=44.0, ResolutionModel=rm)

        marires = Instrument('MARI')
        marires.setChopper('S')
        marires.setFrequency(250)
        marires.setEi(30)
        rm = ResolutionModel(marires.getResolution, xstart=0.0, xend=29.0, accuracy=0.01)
        cf = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770, Temperature=44.0, ResolutionModel=rm)

        cf = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770, Temperature=44.0, ResolutionModel=rm, FWHMVariation=0.1)

        # ---------------------------

        cf = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770, B40=-0.031787, B42=-0.11611, B44=-0.12544,
                          Temperature=[44.0, 50.], FWHM=[1.1, 0.9])
        cf.PeakShape = 'Lorentzian'
        cf.peaks[0].param[0]['FWHM'] = 1.11
        cf.peaks[1].param[1]['FWHM'] = 1.12
        cf.background = Background(peak=Function('Gaussian', Height=10, Sigma=0.3),
                                   background=Function('FlatBackground', A0=1.0))
        cf.background[1].peak.param['Sigma'] = 0.8
        cf.background[1].background.param['A0'] = 1.1

        # The B parameters are common for all spectra - syntax doesn't change
        cf.ties(B20=1.0, B40='B20/2')
        cf.constraints('1 < B22 <= 2', 'B22 < 4')

        # Backgrounds and peaks are different for different spectra - must be indexed
        cf.background[0].peak.ties(Height=10.1)
        cf.background[0].peak.constraints('Sigma > 0.1')
        cf.background[1].peak.ties(Height=20.2)
        cf.background[1].peak.constraints('Sigma > 0.2')
        cf.peaks[1].tieAll('FWHM=2*f1.FWHM', 2, 5)
        cf.peaks[0].constrainAll('FWHM < 2.2', 1, 4)

        rm = ResolutionModel([self.my_func, marires.getResolution], 0, 100, accuracy = 0.01)
        cf.ResolutionModel = rm

        # Calculate second spectrum, use the generated x-values
        sp = cf.getSpectrum(1)
        # Calculate second spectrum, use the first spectrum of a workspace
        sp = cf.getSpectrum(1, 'CrystalField_Ce')
        # Calculate first spectrum, use the i-th spectrum of a workspace
        i=0
        sp = cf.getSpectrum(0, 'CrystalField_Ce', i)

        print(cf.function)

        cf.Temperature = [5, 50, 150]

        print()
        print(cf.function)

        ws = 'CrystalField_Ce'
        ws1 = 'CrystalField_Ce'
        ws2 = 'CrystalField_Ce'
        cf = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770, B40=-0.031787, B42=-0.11611, B44=-0.12544, Temperature=5)

        # In case of a single spectrum (ws is a workspace)
        fit = CrystalFieldFit(Model=cf, InputWorkspace=ws)

        # Or for multiple spectra
        fit = CrystalFieldFit(Model=cf, InputWorkspace=[ws1, ws2])
        cf.Temperature = [5, 50]
        fit.fit()

        params = {'B20': 0.377, 'B22': 3.9, 'B40': -0.03, 'B42': -0.116, 'B44': -0.125,
                  'Temperature': [44.0, 50.], 'FWHM': [1.1, 0.9]}
        cf1 = CrystalField('Ce', 'C2v', **params)
        cf2 = CrystalField('Pr', 'C2v', **params)
        cfms = cf1 + cf2
        cf = 2*cf1 + cf2

        cfms = CrystalFieldMultiSite(Ions=['Ce', 'Pr'], Symmetries=['C2v', 'C2v'], Temperatures=[44.0], FWHMs=[1.1])
        cfms['ion0.B40'] = -0.031
        cfms['ion1.B20'] = 0.37737
        b = cfms['ion0.B22']

        print(b)
        print(cfms.function)

        cfms = CrystalFieldMultiSite(Ions=['Ce', 'Pr'], Symmetries=['C2v', 'C2v'], Temperatures=[44.0], FWHMs=[1.1],
                                     parameters={'ion0.B20': 0.37737, 'ion0.B22': 3.9770, 'ion1.B40':-0.031787,
                                                 'ion1.B42':-0.11611, 'ion1.B44':-0.12544})
        cfms = CrystalFieldMultiSite(Ions='Ce', Symmetries='C2v', Temperatures=[20], FWHMs=[1.0],
                                     Background='name=Gaussian,Height=0,PeakCentre=1,Sigma=0;name=LinearBackground,A0=0,A1=0')
        cfms = CrystalFieldMultiSite(Ions=['Ce'], Symmetries=['C2v'], Temperatures=[50], FWHMs=[0.9],
                                     Background=LinearBackground(A0=1.0), BackgroundPeak=Gaussian(Height=10, Sigma=0.3))
        cfms = CrystalFieldMultiSite(Ions='Ce', Symmetries='C2v', Temperatures=[20], FWHMs=[1.0],
                                     Background= Gaussian(PeakCentre=1) + LinearBackground())
        cfms = CrystalFieldMultiSite(Ions=['Ce','Pr'], Symmetries=['C2v', 'C2v'], Temperatures=[44, 50], FWHMs=[1.1, 0.9],
                                     Background=FlatBackground(), BackgroundPeak=Gaussian(Height=10, Sigma=0.3),
                                     parameters={'ion0.B20': 0.37737, 'ion0.B22': 3.9770, 'ion1.B40':-0.031787,
                                                 'ion1.B42':-0.11611, 'ion1.B44':-0.12544})
        cfms.ties({'sp0.bg.f0.Height': 10.1})
        cfms.constraints('sp0.bg.f0.Sigma > 0.1')
        cfms.constraints('ion0.sp0.pk1.FWHM < 2.2')
        cfms.ties({'ion0.sp1.pk2.FWHM': '2*ion0.sp1.pk1.FWHM', 'ion1.sp1.pk3.FWHM': '2*ion1.sp1.pk2.FWHM'})

        # --------------------------

        params = {'ion0.B20': 0.37737, 'ion0.B22': 3.9770, 'ion1.B40':-0.031787, 'ion1.B42':-0.11611, 'ion1.B44':-0.12544}
        cf = CrystalFieldMultiSite(Ions=['Ce', 'Pr'], Symmetries=['C2v', 'C2v'], Temperatures=[44.0, 50.0],
                                   FWHMs=[1.0, 1.0], ToleranceIntensity=6.0, ToleranceEnergy=1.0,  FixAllPeaks=True,
                                   parameters=params)

        cf.fix('ion0.BmolX', 'ion0.BmolY', 'ion0.BmolZ', 'ion0.BextX', 'ion0.BextY', 'ion0.BextZ', 'ion0.B40',
               'ion0.B42', 'ion0.B44', 'ion0.B60', 'ion0.B62', 'ion0.B64', 'ion0.B66', 'ion0.IntensityScaling',
               'ion1.BmolX', 'ion1.BmolY', 'ion1.BmolZ', 'ion1.BextX', 'ion1.BextY', 'ion1.BextZ', 'ion1.B40',
               'ion1.B42', 'ion1.B44', 'ion1.B60', 'ion1.B62', 'ion1.B64', 'ion1.B66', 'ion1.IntensityScaling',
               'sp0.IntensityScaling', 'sp1.IntensityScaling')

        chi2 = CalculateChiSquared(str(cf.function), InputWorkspace=ws1, InputWorkspace_1=ws2)[1]

        fit = CrystalFieldFit(Model=cf, InputWorkspace=[ws1, ws2], MaxIterations=10)
        fit.fit()

        print(chi2)

        cfms = CrystalFieldMultiSite(Ions='Ce', Symmetries='C2', Temperatures=[25], FWHMs=[1.0], PeakShape='Gaussian',
                                     BmolX=1.0, B40=-0.02)
        print(str(cfms.function).split(',')[0])

        # --------------------------

        # Create some crystal field data
        origin = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770, B40=-0.031787, B42=-0.11611, B44=-0.12544,
                              Temperature=44.0, FWHM=1.1)
        x, y = origin.getSpectrum()
        ws = makeWorkspace(x, y)

        # Define a CrystalField object with parameters slightly shifted.
        cf = CrystalField('Ce', 'C2v', B20=0, B22=0, B40=0, B42=0, B44=0,
                          Temperature=44.0, FWHM=1.0, ResolutionModel=([0, 100], [1, 1]), FWHMVariation=0)

        # Set any ties on the field parameters.
        cf.ties(B20=0.37737)
        # Create a fit object
        fit = CrystalFieldFit(cf, InputWorkspace=ws)
        # Find initial values for the field parameters.
        # You need to define the energy splitting and names of parameters to estimate.
        # Optionally additional constraints can be set on tied parameters (eg, peak centres).
        fit.estimate_parameters(EnergySplitting=50,
                                Parameters=['B22', 'B40', 'B42', 'B44'],
                                Constraints='20<f1.PeakCentre<45,20<f2.PeakCentre<45',
                                NSamples=1000)
        print('Returned', fit.get_number_estimates(), 'sets of parameters.')
        # The first set (the smallest chi squared) is selected by default.
        # Select a different parameter set if required
        fit.select_estimated_parameters(3)
        print(cf['B22'], cf['B40'], cf['B42'], cf['B44'])
        # Run fit
        fit.fit()

        # --------------------------

        from CrystalField import PointCharge
        axial_pc_model = PointCharge([[-2, 0, 0, -4], [-2, 0, 0, 4]], 'Nd')
        axial_blm = axial_pc_model.calculate()
        print(axial_blm)

        from CrystalField import PointCharge
        from mantid.geometry import CrystalStructure
        perovskite_structure = CrystalStructure('4 4 4 90 90 90', 'P m -3 m', 'Ce 0 0 0 1 0; Al 0.5 0.5 0.5 1 0; O 0.5 0.5 0 1 0')
        cubic_pc_model = PointCharge(perovskite_structure, 'Ce', Charges={'Ce':3, 'Al':3, 'O':-2}, MaxDistance=7.5)

        cubic_pc_model = PointCharge(perovskite_structure, 'Ce', Charges={'Ce':3, 'Al':3, 'O':-2}, Neighbour=2)
        print(cubic_pc_model)

        cif_pc_model = PointCharge('Sm2O3.cif')
        print(cif_pc_model.getIons())

        cif_pc_model.Charges = {'O1':-2, 'O2':-2, 'Sm1':3, 'Sm2':3, 'Sm3':3}
        cif_pc_model.IonLabel = 'Sm2'
        cif_pc_model.Neighbour = 1
        cif_blm = cif_pc_model.calculate()
        print(cif_blm)
        bad_pc_model = PointCharge('Sm2O3.cif', MaxDistance=7.5, Neighbour=2)
        print(bad_pc_model.Neighbour)
        print(bad_pc_model.MaxDistance)

        cif_pc_model.Charges = {'O':-2, 'Sm':3}
        cif_blm = cif_pc_model.calculate()
        print(cif_blm)

        cf = CrystalField('Sm', 'C2', Temperature=5, FWHM=10, **cif_pc_model.calculate())
        fit = CrystalFieldFit(cf, InputWorkspace=ws)

        fit = CrystalFieldFit(cf, InputWorkspace=ws)
        fit.fit()

        # --------------------------

        cf = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770, Temperature=44.0)
        Cv = cf.getHeatCapacity()       # Calculates Cv(T) for 1<T<300K in 1K steps  (default)

        T = np.arange(1,900,5)
        Cv = cf.getHeatCapacity(T)      # Calculates Cv(T) for specified values of T (1 to 900K in 5K steps here)

        # Temperatures from a single spectrum workspace
        ws = CreateWorkspace(T, T, T)
        Cv = cf.getHeatCapacity(ws)     # Use the x-values of a workspace as the temperatures
        ws_cp = CreateWorkspace(*Cv)

        # Temperatures from a multi-spectrum workspace
        ws = CreateWorkspace(T, T, T, NSpec=2)
        Cv = cf.getHeatCapacity(ws, 1)  # Uses the second spectrum's x-values for T (e.g. 450<T<900)

        chi_v = cf.getSusceptibility(T, Hdir=[1, 1, 1])
        chi_v_powder = cf.getSusceptibility(T, Hdir='powder')
        chi_v_cgs = cf.getSusceptibility(T, Hdir=[1, 1, 0], Unit='SI')
        chi_v_bohr = cf.getSusceptibility(T, Unit='bohr')
        print(type([chi_v, chi_v_powder, chi_v_cgs, chi_v_bohr]))
        moment_t = cf.getMagneticMoment(Temperature=T, Hdir=[1, 1, 1], Hmag=0.1) # Calcs M(T) with at 0.1T field||[111]
        H = np.linspace(0, 30, 121)
        moment_h = cf.getMagneticMoment(Hmag=H, Hdir='powder', Temperature=10)   # Calcs M(H) at 10K for powder sample
        moment_SI = cf.getMagneticMoment(H, [1, 1, 1], Unit='SI')         # M(H) in Am^2/mol at 1K for H||[111]
        moment_cgs = cf.getMagneticMoment(100, Temperature=T, Unit='cgs') # M(T) in emu/mol in a field of 100G || [001]
        print(type([moment_t, moment_h, moment_SI, moment_cgs]))

        # --------------------------

        from CrystalField import CrystalField, CrystalFieldFit, PhysicalProperties
        # Fits a heat capacity dataset - you must have subtracted the phonon contribution by some method already
        # and the data must be in J/mol/K.
        cf = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770, B40=-0.031787, B42=-0.11611, B44=-0.12544,
                          PhysicalProperty=PhysicalProperties('Cv'))
        fitcv = CrystalFieldFit(Model=cf, InputWorkspace=ws)
        fitcv.fit()

        params = {'B20':0.37737, 'B22':3.9770, 'B40':-0.031787, 'B42':-0.11611, 'B44':-0.12544}
        cf = CrystalField('Ce', 'C2v', **params)
        cf.PhysicalProperty = PhysicalProperties('Cv')
        fitcv = CrystalFieldFit(Model=cf, InputWorkspace=ws)
        fitcv.fit()

        # Fits a susceptibility dataset. Data is the volume susceptibility in SI units
        cf = CrystalField('Ce', 'C2v', **params)
        cf.PhysicalProperty = PhysicalProperties('susc', Hdir='powder', Unit='SI')
        fit_chi = CrystalFieldFit(Model=cf, InputWorkspace=ws)
        fit_chi.fit()

        # Fits a magnetisation dataset. Data is in emu/mol, and was measured at 5K with the field || [111].
        cf = CrystalField('Ce', 'C2v', **params)
        cf.PhysicalProperty = PhysicalProperties('M(H)', Temperature=5, Hdir=[1, 1, 1], Unit='cgs')
        fit_mag = CrystalFieldFit(Model=cf, InputWorkspace=ws)
        fit_mag.fit()

        # Fits a magnetisation vs temperature dataset. Data is in Am^2/mol, measured with a 0.1T field || [110]
        cf = CrystalField('Ce', 'C2v', **params)
        cf.PhysicalProperty = PhysicalProperties('M(T)', Hmag=0.1, Hdir=[1, 1, 0], Unit='SI')
        fit_moment = CrystalFieldFit(Model=cf, InputWorkspace=ws)
        fit_moment.fit()

        # --------------------------

        # Pregenerate the required workspaces
        for tt in [10, 44, 50]:
            cf = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770, B40=-0.031787, B42=-0.11611, B44=-0.12544, Temperature=tt, FWHM=0.5)
            x, y = cf.getSpectrum()
            self.my_create_ws('ws_ins_'+str(tt)+'K', x, y)
        ws_ins_10K = mtd['ws_ins_10K']
        ws_ins_44K = mtd['ws_ins_44K']
        ws_ins_50K = mtd['ws_ins_50K']
        ws_cp = self.my_create_ws('ws_cp', *cf.getHeatCapacity())
        ws_chi = self.my_create_ws('ws_chi', *cf.getSusceptibility(np.linspace(1,300,100), Hdir='powder', Unit='cgs'))
        ws_mag = self.my_create_ws('ws_mag', *cf.getMagneticMoment(Hmag=np.linspace(0, 30, 100), Hdir=[1,1,1], Unit='bohr', Temperature=5))

        # --------------------------

        # Fits an INS spectrum (at 10K) and the heat capacity simultaneously
        cf = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770, B40=-0.031787, B42=-0.11611, B44=-0.12544)
        cf.Temperature = 10
        cf.FWHM = 1.5
        cf.PhysicalProperty = PhysicalProperties('Cv')
        fit = CrystalFieldFit(Model=cf, InputWorkspace=[ws_ins_10K, ws_cp])
        fit.fit()

        # Fits two INS spectra (at 44K and 50K) and the heat capacity, susceptibility and magnetisation simultaneously.
        PPCv = PhysicalProperties('Cv')
        PPchi = PhysicalProperties('susc', 'powder', Unit='cgs')
        PPMag = PhysicalProperties('M(H)', [1, 1, 1], 5, 'bohr')
        cf = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770, B40=-0.031787, B42=-0.11611, B44=-0.12544,
                          Temperature=[44.0, 50.], FWHM=[1.1, 0.9], PhysicalProperty=[PPCv, PPchi, PPMag] )
        fit = CrystalFieldFit(Model=cf, InputWorkspace=[ws_ins_44K, ws_ins_50K, ws_cp, ws_chi, ws_mag])
        fit.fit()
    def runTest(self):
        from CrystalField import CrystalField, CrystalFieldFit, CrystalFieldMultiSite, Background, Function, ResolutionModel

        cf = CrystalField('Ce', 'C2v')
        cf = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770)
        cf['B40'] = -0.031
        b = cf['B40']

        # Calculate and return the Hamiltonian matrix as a 2D numpy array.
        h = cf.getHamiltonian()
        print(h)
        # Calculate and return the eigenvalues of the Hamiltonian as a 1D numpy array.
        e = cf.getEigenvalues()
        print(e)
        # Calculate and return the eigenvectors of the Hamiltonian as a 2D numpy array.
        w = cf.getEigenvectors()
        print(w)
        # Using the keyword argument
        cf = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770, Temperature=44)
        # Using the property
        cf.Temperature = 44

        print(cf.getPeakList())
        #[[  0.00000000e+00   2.44006198e+01   4.24977124e+01   1.80970926e+01 -2.44006198e+01]
        # [  2.16711565e+02   8.83098530e+01   5.04430056e+00   1.71153708e-01  1.41609425e-01]]
        cf.ToleranceIntensity = 1
        print(cf.getPeakList())
        #[[   0.           24.40061976   42.49771237]
        # [ 216.71156467   88.30985303    5.04430056]]
        cf.PeakShape = 'Gaussian'
        cf.FWHM = 0.9
        sp = cf.getSpectrum()
        print(cf.function)
        CrystalField_Ce = CreateWorkspace(*sp)
        print(CrystalField_Ce)

        # If the peak shape is Gaussian
        cf.peaks.param[1]['Sigma'] = 2.0
        cf.peaks.param[2]['Sigma'] = 0.01

        # If the peak shape is Lorentzian
        cf.PeakShape = 'Lorentzian'
        cf.peaks.param[1]['FWHM'] = 2.0
        cf.peaks.param[2]['FWHM'] = 0.01

        cf = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770, B40=-0.031787, B42=-0.11611, B44=-0.12544,
                          Temperature=44.0, FWHM=1.1)
        cf.background = Background(peak=Function('Gaussian', Height=10, Sigma=1),
                                   background=Function('LinearBackground', A0=1.0, A1=0.01))
        h = cf.background.peak.param['Height']
        a1 = cf.background.background.param['A1']
        print(h)
        print(a1)

        cf.ties(B20=1.0, B40='B20/2')
        cf.constraints('1 < B22 <= 2', 'B22 < 4')

        print(cf.function[1].getTies())
        print(cf.function[1].getConstraints())

        cf.background.peak.ties(Height=10.1)
        cf.background.peak.constraints('Sigma > 0')
        cf.background.background.ties(A0=0.1)
        cf.background.background.constraints('A1 > 0')

        print(cf.function[0][0].getConstraints())
        print(cf.function[0][1].getConstraints())
        print(cf.function.getTies())
        print(cf.function.getConstraints())

        cf.peaks.ties({'f2.FWHM': '2*f1.FWHM', 'f3.FWHM': '2*f2.FWHM'})
        cf.peaks.constraints('f0.FWHM < 2.2', 'f1.FWHM >= 0.1')

        cf.PeakShape = 'Gaussian'
        cf.peaks.tieAll('Sigma=0.1', 3)
        cf.peaks.constrainAll('0 < Sigma < 0.1', 4)
        cf.peaks.tieAll('Sigma=f0.Sigma', 1, 3)
        cf.peaks.ties({'f1.Sigma': 'f0.Sigma', 'f2.Sigma': 'f0.Sigma', 'f3.Sigma': 'f0.Sigma'})

        rm = ResolutionModel(([1, 2, 3, 100], [0.1, 0.3, 0.35, 2.1]))
        cf = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770, Temperature=44.0, ResolutionModel=rm)

        rm = ResolutionModel(self.my_func, xstart=0.0, xend=24.0, accuracy=0.01)
        cf = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770, Temperature=44.0, ResolutionModel=rm)

        marires = PyChop2('MARI')
        marires.setChopper('S')
        marires.setFrequency(250)
        marires.setEi(30)
        rm = ResolutionModel(marires.getResolution, xstart=0.0, xend=29.0, accuracy=0.01)
        cf = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770, Temperature=44.0, ResolutionModel=rm)

        cf = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770, Temperature=44.0, ResolutionModel=rm, FWHMVariation=0.1)

        # ---------------------------

        cf = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770, B40=-0.031787, B42=-0.11611, B44=-0.12544,
                          Temperature=[44.0, 50], FWHM=[1.1, 0.9])
        cf.PeakShape = 'Lorentzian'
        cf.peaks[0].param[0]['FWHM'] = 1.11
        cf.peaks[1].param[1]['FWHM'] = 1.12
        cf.background = Background(peak=Function('Gaussian', Height=10, Sigma=0.3),
                                   background=Function('FlatBackground', A0=1.0))
        cf.background[1].peak.param['Sigma'] = 0.8
        cf.background[1].background.param['A0'] = 1.1

        # The B parameters are common for all spectra - syntax doesn't change
        cf.ties(B20=1.0, B40='B20/2')
        cf.constraints('1 < B22 <= 2', 'B22 < 4')

        # Backgrounds and peaks are different for different spectra - must be indexed
        cf.background[0].peak.ties(Height=10.1)
        cf.background[0].peak.constraints('Sigma > 0.1')
        cf.background[1].peak.ties(Height=20.2)
        cf.background[1].peak.constraints('Sigma > 0.2')
        cf.peaks[1].tieAll('FWHM=2*f1.FWHM', 2, 5)
        cf.peaks[0].constrainAll('FWHM < 2.2', 1, 4)

        rm = ResolutionModel([self.my_func, marires.getResolution], 0, 100, accuracy = 0.01)
        cf.ResolutionModel = rm

        # Calculate second spectrum, use the generated x-values
        sp = cf.getSpectrum(1)
        # Calculate second spectrum, use the first spectrum of a workspace
        sp = cf.getSpectrum(1, 'CrystalField_Ce')
        # Calculate first spectrum, use the i-th spectrum of a workspace
        i=0
        sp = cf.getSpectrum(0, 'CrystalField_Ce', i)

        print(cf.function)

        cf.Temperature = [5, 50, 150]

        print()
        print(cf.function)

        ws = 'CrystalField_Ce'
        ws1 = 'CrystalField_Ce'
        ws2 = 'CrystalField_Ce'
        cf = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770, B40=-0.031787, B42=-0.11611, B44=-0.12544, Temperature=5)

        # In case of a single spectrum (ws is a workspace)
        fit = CrystalFieldFit(Model=cf, InputWorkspace=ws)

        # Or for multiple spectra
        fit = CrystalFieldFit(Model=cf, InputWorkspace=[ws1, ws2])
        cf.Temperature = [5, 50]
        fit.fit()

        params = {'B20': 0.377, 'B22': 3.9, 'B40': -0.03, 'B42': -0.116, 'B44': -0.125,
                  'Temperature': [44.0, 50], 'FWHM': [1.1, 0.9]}
        cf1 = CrystalField('Ce', 'C2v', **params)
        cf2 = CrystalField('Pr', 'C2v', **params)
        cfms = cf1 + cf2
        cf = 2*cf1 + cf2

        cfms = CrystalFieldMultiSite(Ions=['Ce', 'Pr'], Symmetries=['C2v', 'C2v'], Temperatures=[44.0], FWHMs=[1.1])
        cfms['ion0.B40'] = -0.031
        cfms['ion1.B20'] = 0.37737
        b = cfms['ion0.B22']

        print(b)
        print(cfms.function)

        cfms = CrystalFieldMultiSite(Ions=['Ce', 'Pr'], Symmetries=['C2v', 'C2v'], Temperatures=[44.0], FWHMs=[1.1],
                                     parameters={'ion0.B20': 0.37737, 'ion0.B22': 3.9770, 'ion1.B40':-0.031787,
                                                 'ion1.B42':-0.11611, 'ion1.B44':-0.12544})
        cfms = CrystalFieldMultiSite(Ions='Ce', Symmetries='C2v', Temperatures=[20], FWHMs=[1.0],
                                     Background='name=Gaussian,Height=0,PeakCentre=1,Sigma=0;name=LinearBackground,A0=0,A1=0')
        cfms = CrystalFieldMultiSite(Ions=['Ce'], Symmetries=['C2v'], Temperatures=[50], FWHMs=[0.9],
                                     Background=LinearBackground(A0=1.0), BackgroundPeak=Gaussian(Height=10, Sigma=0.3))
        cfms = CrystalFieldMultiSite(Ions='Ce', Symmetries='C2v', Temperatures=[20], FWHMs=[1.0],
                                     Background= Gaussian(PeakCentre=1) + LinearBackground())
        cfms = CrystalFieldMultiSite(Ions=['Ce','Pr'], Symmetries=['C2v', 'C2v'], Temperatures=[44, 50], FWHMs=[1.1, 0.9],
                                     Background=FlatBackground(), BackgroundPeak=Gaussian(Height=10, Sigma=0.3),
                                     parameters={'ion0.B20': 0.37737, 'ion0.B22': 3.9770, 'ion1.B40':-0.031787,
                                                 'ion1.B42':-0.11611, 'ion1.B44':-0.12544})
        cfms.ties({'sp0.bg.f0.Height': 10.1})
        cfms.constraints('sp0.bg.f0.Sigma > 0.1')
        cfms.constraints('ion0.sp0.pk1.FWHM < 2.2')
        cfms.ties({'ion0.sp1.pk2.FWHM': '2*ion0.sp1.pk1.FWHM', 'ion1.sp1.pk3.FWHM': '2*ion1.sp1.pk2.FWHM'})

        # --------------------------

        params = {'ion0.B20': 0.37737, 'ion0.B22': 3.9770, 'ion1.B40':-0.031787, 'ion1.B42':-0.11611, 'ion1.B44':-0.12544}
        cf = CrystalFieldMultiSite(Ions=['Ce', 'Pr'], Symmetries=['C2v', 'C2v'], Temperatures=[44.0, 50.0],
                                   FWHMs=[1.0, 1.0], ToleranceIntensity=6.0, ToleranceEnergy=1.0,  FixAllPeaks=True,
                                   parameters=params)

        cf.fix('ion0.BmolX', 'ion0.BmolY', 'ion0.BmolZ', 'ion0.BextX', 'ion0.BextY', 'ion0.BextZ', 'ion0.B40',
               'ion0.B42', 'ion0.B44', 'ion0.B60', 'ion0.B62', 'ion0.B64', 'ion0.B66', 'ion0.IntensityScaling',
               'ion1.BmolX', 'ion1.BmolY', 'ion1.BmolZ', 'ion1.BextX', 'ion1.BextY', 'ion1.BextZ', 'ion1.B40',
               'ion1.B42', 'ion1.B44', 'ion1.B60', 'ion1.B62', 'ion1.B64', 'ion1.B66', 'ion1.IntensityScaling',
               'sp0.IntensityScaling', 'sp1.IntensityScaling')

        chi2 = CalculateChiSquared(str(cf.function), InputWorkspace=ws1, InputWorkspace_1=ws2)[1]

        fit = CrystalFieldFit(Model=cf, InputWorkspace=[ws1, ws2], MaxIterations=10)
        fit.fit()

        print(chi2)

        cfms = CrystalFieldMultiSite(Ions='Ce', Symmetries='C2', Temperatures=[25], FWHMs=[1.0], PeakShape='Gaussian',
                                     BmolX=1.0, B40=-0.02)
        print(str(cfms.function).split(',')[0])

        # --------------------------

        # Create some crystal field data
        origin = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770, B40=-0.031787, B42=-0.11611, B44=-0.12544,
                              Temperature=44.0, FWHM=1.1)
        x, y = origin.getSpectrum()
        ws = makeWorkspace(x, y)

        # Define a CrystalField object with parameters slightly shifted.
        cf = CrystalField('Ce', 'C2v', B20=0, B22=0, B40=0, B42=0, B44=0,
                          Temperature=44.0, FWHM=1.0, ResolutionModel=([0, 100], [1, 1]), FWHMVariation=0)

        # Set any ties on the field parameters.
        cf.ties(B20=0.37737)
        # Create a fit object
        fit = CrystalFieldFit(cf, InputWorkspace=ws)
        # Find initial values for the field parameters.
        # You need to define the energy splitting and names of parameters to estimate.
        # Optionally additional constraints can be set on tied parameters (eg, peak centres).
        fit.estimate_parameters(EnergySplitting=50,
                                Parameters=['B22', 'B40', 'B42', 'B44'],
                                Constraints='20<f1.PeakCentre<45,20<f2.PeakCentre<45',
                                NSamples=1000)
        print('Returned', fit.get_number_estimates(), 'sets of parameters.')
        # The first set (the smallest chi squared) is selected by default.
        # Select a different parameter set if required
        fit.select_estimated_parameters(3)
        print(cf['B22'], cf['B40'], cf['B42'], cf['B44'])
        # Run fit
        fit.fit()

        # --------------------------

        from CrystalField import PointCharge
        axial_pc_model = PointCharge([[-2, 0, 0, -4], [-2, 0, 0, 4]], 'Nd')
        axial_blm = axial_pc_model.calculate()
        print(axial_blm)

        from CrystalField import PointCharge
        from mantid.geometry import CrystalStructure
        perovskite_structure = CrystalStructure('4 4 4 90 90 90', 'P m -3 m', 'Ce 0 0 0 1 0; Al 0.5 0.5 0.5 1 0; O 0.5 0.5 0 1 0')
        cubic_pc_model = PointCharge(perovskite_structure, 'Ce', Charges={'Ce':3, 'Al':3, 'O':-2}, MaxDistance=7.5)

        cubic_pc_model = PointCharge(perovskite_structure, 'Ce', Charges={'Ce':3, 'Al':3, 'O':-2}, Neighbour=2)
        print(cubic_pc_model)

        cif_pc_model = PointCharge('Sm2O3.cif')
        print(cif_pc_model.getIons())

        cif_pc_model.Charges = {'O1':-2, 'O2':-2, 'Sm1':3, 'Sm2':3, 'Sm3':3}
        cif_pc_model.IonLabel = 'Sm2'
        cif_pc_model.Neighbour = 1
        cif_blm = cif_pc_model.calculate()
        print(cif_blm)
        bad_pc_model = PointCharge('Sm2O3.cif', MaxDistance=7.5, Neighbour=2)
        print(bad_pc_model.Neighbour)
        print(bad_pc_model.MaxDistance)

        cif_pc_model.Charges = {'O':-2, 'Sm':3}
        cif_blm = cif_pc_model.calculate()
        print(cif_blm)

        cf = CrystalField('Sm', 'C2', Temperature=5, FWHM=10, **cif_pc_model.calculate())
        fit = CrystalFieldFit(cf, InputWorkspace=ws)

        fit = CrystalFieldFit(cf, InputWorkspace=ws)
        fit.fit()

        # --------------------------

        cf = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770, Temperature=44.0)
        Cv = cf.getHeatCapacity()       # Calculates Cv(T) for 1<T<300K in 1K steps  (default)

        T = np.arange(1,900,5)
        Cv = cf.getHeatCapacity(T)      # Calculates Cv(T) for specified values of T (1 to 900K in 5K steps here)

        # Temperatures from a single spectrum workspace
        ws = CreateWorkspace(T, T, T)
        Cv = cf.getHeatCapacity(ws)     # Use the x-values of a workspace as the temperatures
        ws_cp = CreateWorkspace(*Cv)

        # Temperatures from a multi-spectrum workspace
        ws = CreateWorkspace(T, T, T, NSpec=2)
        Cv = cf.getHeatCapacity(ws, 1)  # Uses the second spectrum's x-values for T (e.g. 450<T<900)

        chi_v = cf.getSusceptibility(T, Hdir=[1, 1, 1])
        chi_v_powder = cf.getSusceptibility(T, Hdir='powder')
        chi_v_cgs = cf.getSusceptibility(T, Hdir=[1, 1, 0], Unit='SI')
        chi_v_bohr = cf.getSusceptibility(T, Unit='bohr')
        print(type([chi_v, chi_v_powder, chi_v_cgs, chi_v_bohr]))
        moment_t = cf.getMagneticMoment(Temperature=T, Hdir=[1, 1, 1], Hmag=0.1) # Calcs M(T) with at 0.1T field||[111]
        H = np.linspace(0, 30, 121)
        moment_h = cf.getMagneticMoment(Hmag=H, Hdir='powder', Temperature=10)   # Calcs M(H) at 10K for powder sample
        moment_SI = cf.getMagneticMoment(H, [1, 1, 1], Unit='SI')         # M(H) in Am^2/mol at 1K for H||[111]
        moment_cgs = cf.getMagneticMoment(100, Temperature=T, Unit='cgs') # M(T) in emu/mol in a field of 100G || [001]
        print(type([moment_t, moment_h, moment_SI, moment_cgs]))

        # --------------------------

        from CrystalField import CrystalField, CrystalFieldFit, PhysicalProperties
        # Fits a heat capacity dataset - you must have subtracted the phonon contribution by some method already
        # and the data must be in J/mol/K.
        cf = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770, B40=-0.031787, B42=-0.11611, B44=-0.12544,
                          PhysicalProperty=PhysicalProperties('Cv'))
        fitcv = CrystalFieldFit(Model=cf, InputWorkspace=ws)
        fitcv.fit()

        params = {'B20':0.37737, 'B22':3.9770, 'B40':-0.031787, 'B42':-0.11611, 'B44':-0.12544}
        cf = CrystalField('Ce', 'C2v', **params)
        cf.PhysicalProperty = PhysicalProperties('Cv')
        fitcv = CrystalFieldFit(Model=cf, InputWorkspace=ws)
        fitcv.fit()

        # Fits a susceptibility dataset. Data is the volume susceptibility in SI units
        cf = CrystalField('Ce', 'C2v', **params)
        cf.PhysicalProperty = PhysicalProperties('susc', Hdir='powder', Unit='SI')
        fit_chi = CrystalFieldFit(Model=cf, InputWorkspace=ws)
        fit_chi.fit()

        # Fits a magnetisation dataset. Data is in emu/mol, and was measured at 5K with the field || [111].
        cf = CrystalField('Ce', 'C2v', **params)
        cf.PhysicalProperty = PhysicalProperties('M(H)', Temperature=5, Hdir=[1, 1, 1], Unit='cgs')
        fit_mag = CrystalFieldFit(Model=cf, InputWorkspace=ws)
        fit_mag.fit()

        # Fits a magnetisation vs temperature dataset. Data is in Am^2/mol, measured with a 0.1T field || [110]
        cf = CrystalField('Ce', 'C2v', **params)
        cf.PhysicalProperty = PhysicalProperties('M(T)', Hmag=0.1, Hdir=[1, 1, 0], Unit='SI')
        fit_moment = CrystalFieldFit(Model=cf, InputWorkspace=ws)
        fit_moment.fit()

        # --------------------------

        # Pregenerate the required workspaces
        for tt in [10, 44, 50]:
            cf = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770, B40=-0.031787, B42=-0.11611, B44=-0.12544, Temperature=tt, FWHM=0.5)
            x, y = cf.getSpectrum()
            self.my_create_ws('ws_ins_'+str(tt)+'K', x, y)
        ws_ins_10K = mtd['ws_ins_10K']
        ws_ins_44K = mtd['ws_ins_44K']
        ws_ins_50K = mtd['ws_ins_50K']
        ws_cp = self.my_create_ws('ws_cp', *cf.getHeatCapacity())
        ws_chi = self.my_create_ws('ws_chi', *cf.getSusceptibility(np.linspace(1,300,100), Hdir='powder', Unit='cgs'))
        ws_mag = self.my_create_ws('ws_mag', *cf.getMagneticMoment(Hmag=np.linspace(0, 30, 100), Hdir=[1,1,1], Unit='bohr', Temperature=5))

        # --------------------------

        # Fits an INS spectrum (at 10K) and the heat capacity simultaneously
        cf = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770, B40=-0.031787, B42=-0.11611, B44=-0.12544)
        cf.Temperature = 10
        cf.FWHM = 1.5
        cf.PhysicalProperty = PhysicalProperties('Cv')
        fit = CrystalFieldFit(Model=cf, InputWorkspace=[ws_ins_10K, ws_cp])
        fit.fit()

        # Fits two INS spectra (at 44K and 50K) and the heat capacity, susceptibility and magnetisation simultaneously.
        PPCv = PhysicalProperties('Cv')
        PPchi = PhysicalProperties('susc', 'powder', Unit='cgs')
        PPMag = PhysicalProperties('M(H)', [1, 1, 1], 5, 'bohr')
        cf = CrystalField('Ce', 'C2v', B20=0.37737, B22=3.9770, B40=-0.031787, B42=-0.11611, B44=-0.12544,
                          Temperature=[44.0, 50], FWHM=[1.1, 0.9], PhysicalProperty=[PPCv, PPchi, PPMag] )
        fit = CrystalFieldFit(Model=cf, InputWorkspace=[ws_ins_44K, ws_ins_50K, ws_cp, ws_chi, ws_mag])
        fit.fit()
示例#7
0
lit_par = {
    'B20': -.27,
    'B22': -.34,
    'B40': 1e-6,
    'B42': 0.04158,
    'B44': 0.01369,
    'B60': 0.112e-3,
    'B62': 0.4185e-3,
    'B64': -0.555e-3,
    'B66': 0.588e-3
}  # K
for parameter in lit_par.keys():
    lit_par[parameter] *= Kelvin_to_meV

# Set up the crystal field model.
cf = CrystalField('Ho', 'D2', Temperature=[55, 159], FWHM=0.3, **lit_par)
cf.PeakShape = 'Lorentzian'
cf.IntensityScaling = [
    0.2, 0.2
]  # Scale factor if data is not in absolute units (mbarn/sr/f.u./meV), will be fitted.
cf.background = Background(
    peak=Function('Gaussian', Height=700, Sigma=0.4 / 2.3))
cf.ResolutionModel = [resmod, resmod]

# Runs the fit
fit = CrystalFieldFit(Model=cf,
                      InputWorkspace=[data_ws3, data_ws4],
                      MaxIterations=2000,
                      Output='Fit_159K')
fit.fit()
示例#8
0
                  B42=-0.002,
                  B44=-0.012,
                  B60=5.e-05,
                  B62=0.00054,
                  B64=-0.0006,
                  B66=0.0008)

# Simultaneously fit data measured in a, b and c directions
cf.PhysicalProperty = [
    PhysicalProperties('susc', Hdir=[1, 0, 0], Inverse=True, Unit='cgs'),
    PhysicalProperties('susc', Hdir=[0, 1, 0], Inverse=True, Unit='cgs'),
    PhysicalProperties('susc', Hdir=[0, 0, 1], Inverse=True, Unit='cgs')
]

fit = CrystalFieldFit(Model=cf,
                      InputWorkspace=[sus_a, sus_b, sus_c],
                      MaxIterations=100,
                      Output='fit_susc')
fit.fit()

# Print fitted parameters and plot results
blm = {}
for parname in ['B20', 'B22', 'B40', 'B42', 'B44', 'B60', 'B62', 'B64', 'B66']:
    blm[parname] = cf[parname]
    print parname + "=" + str(cf[parname])
calc_a = mtd['fit_susc_Workspaces'][0]
calc_b = mtd['fit_susc_Workspaces'][1]
calc_c = mtd['fit_susc_Workspaces'][2]
plt.plot(calc_a.readX(1), calc_a.readY(1), '-k', label='$\chi^a$ Fit')
plt.plot(mtd['sus_a'].readX(0),
         mtd['sus_a'].readY(0),
         'ok',