ytest_BCDEFGHI = txmat('ytest_BCDEFGHI_pow.mat','ytest') xtltest_BCDEFGHI = txmat('xtltest_BCDEFGHI_pow.mat','xtltest') xtrain_A = txmat('xtrain_A_pow.mat','xtrain') # we're gonna use this for testing' ytrain_A = txmat('ytrain_A_pow.mat','ytrain') xtltrain_A = txmat('xtltrain_A_pow.mat','xtltrain') ======= xtrain_pow = sio.loadmat('xtrain_all_pow.mat') xtrain_pow = xtrain_pow['xtrain'] >>>>>>> bd36724a187f99ba8e1e28e7167a1c6f578d48e7 print 'NA classifier pow training BCDEFGHI and A' nu = [0.05, 0.1,.2,.3,.4, 0.5, 0.8] for param in nu: ystring,ystring1 = NA_Classifier.myclassify_NA(2, xtrain_BCDEFGHI, xtest_BCDEFGHI, xtltest_BCDEFGHI, xtrain_A, xtltrain_A, nuparam=param) print 'for nu =' + str(param) print 'results on BCDEFGHI testing set' print ystring print 'results on grid A data set' print ystring1 print '/n /n' xtrain_ABCDEFGH = txmat('xtrain_ABCDEFGH_pow.mat','xtrain') ytrain_ABCDEFGH = txmat('ytrain_ABCDEFGH_pow.mat','ytrain') xtltrain_ABCDEFGH = txmat('xtltrain_ABCDEFGH_pow.mat','xtltrain') xtest_ABCDEFGH = txmat('xtest_ABCDEFGH_pow.mat','xtest')
xtest_ABCDEFGH = txmat('xtest_ABCDEFGH_pow.mat','xtest') ytest_ABCDEFGH= txmat('ytest_ABCDEFGH_pow.mat','ytest') xtltest_ABCDEFGH = txmat('xtltest_ABCDEFGH_pow.mat','xtltest') xtrain_I = txmat('xtrain_I_pow.mat','xtrain') # we're gonna use this for testing' ytrain_I = txmat('ytrain_I_pow.mat','ytrain') xtltrain_I = txmat('xtltrain_I_pow.mat','xtltrain') print 'NA classifier pow training BCDEFGHI and A' nu = [0.05, 0.1,.2,.3,.4, 0.5, 0.8] for param in nu: ystring,ystring1 = NA_Classifier.myclassify_NA(2, xtrain_BCDEFGHI, xtest_BCDEFGHI, xtltest_BCDEFGHI, xtrain_A, xtltrain_A, nuparam=param) ystring2,ystring3 = NA_Classifier.myclassify_NA(2, xtrain_ABCDEFGH, xtest_ABCDEFGH, xtltest_ABCDEFGH, xtrain_I, xtltrain_I, nuparam=param) print 'for nu =' + str(param) print 'results on BCDEFGHI testing set and A data set' print ystring print ystring1 print '\n' print 'results on ABCDEFGH testing set and I data set' print ystring2 print ystring3 print '\n' # ystring0 = NA_Classifier.myclassify_NA(1,xtrain_pow,xtesting)