def lsqQ(para): ois = OIS(trim_start = startdate, trim_end = enddate) Affine = VasicekAffine(x, para, datelist) myCDS = CDS(ois.interpolationois(), datelist, Affine.calQ(), recovery) diff = np.subtract(brz_cds,myCDS.MTM()) return diff
def lsqR(para): ois = OIS(trim_start = startdate, trim_end = enddate) Affine = VasicekAffine(x, para, datelist) diff = np.subtract(ois.interpolationois(),Affine.calR()) return diff
def lsqQ(para): ois = OIS(trim_start = startdate, trim_end = enddate) Affine = VasicekAffine(x, para, datelist) myCDS = CDS(ois.interpolationois(), datelist, Affine.calQ(), recovery) diff = np.subtract(brz_cds,myCDS.MTM())
# for i in a: # print(i) # print(a) start = datetime.datetime(2005, 1, 10) end = datetime.datetime(2010, 1, 10) test_current_day = datetime.datetime(2009, 3, 5) test_end_day = datetime.datetime(2037, 9, 10) start_temp = start end_temp = start_temp + relativedelta(years=30) trim_start = "2005-01-10" trim_end = "2010-01-10" #a=Quandl.get("USTREASURY/YIELD", authtoken="Lqsxas8ieaKqpztgYHxk", trim_start=trim_start, trim_end=trim_end) #print(a) testois = OIS() print('discounted factor', testois.interpolationois()) a = testois.get_OIS_daily(test_current_day, test_end_day) #print(a) #test single:24+i to 28+i # a=testois.interpolationois() # ndays=(end_temp-start_temp).days # d_series=np.arange(0,ndays,1) # plt.plot(d_series,a) # plt.show() # a=(end-start).days # t=[] # t=np.arange(0,a,1) # ndate=[29,89,179,364,729,1094,1824,2554,3649,7329,10949] # print(t)