示例#1
0
def parse_ecocyc(strain, session):
    for path in ecocyc_paths:
        interaction_file_name = "Data/Ecoli/ecocyc_files/interactions_sif/" + path + "_interactions.txt"
        #if there was a problem with obtaining the sif files for a pathway, they may not exist
        if not exists(interaction_file_name): continue
        with open(interaction_file_name) as file:
            reader = csv.DictReader(file)
            for interaction_row in reader:
                interactors_A, interactors_B = [], []
                new_metabolite_A, new_metabolite_B = None, None

                id_A = interaction_row['PARTICIPANT_A']
                id_B = interaction_row['PARTICIPANT_B']

                #if id_A isn't in ecocyc_compounds, it's a uniprot id; search for ecoli orthologs matching id_A
                if id_A not in ecocyc_compounds:
                    for ortholog in session.query(OrthologEcoli).filter_by(
                            ortholog_uniprot=id_A,
                            strain_protein=strain).all():
                        if ortholog is not None:
                            # add both the pseudomonas protein and the ortholog id (will be needed later to
                            # create interaction reference) to interactors_A
                            interactors_A.append(
                                [ortholog.protein, ortholog.ortholog_id])
                # if id_A is in ecocyc_compounds, it means it's a metabolite id
                else:
                    A_ecocyc = ecocyc_compounds[id_A]['ecocyc']
                    #check if the metabolite already exists in database (only need to search ecocyc id since
                    # update_metabolites_ecocyc was called)
                    metabolite = session.query(Metabolite).filter_by(
                        ecocyc=A_ecocyc).first()
                    if metabolite is not None:
                        # if metabolite exists, add both the metabolite and it's name (will be needed later
                        # to create interaction reference) to interactors_A
                        interactors_A.append([metabolite, metabolite.name])
                    else:
                        # if metabolite doesn't exist yet, store it's id to create it later (don't create it now
                        # since if interactor_B is invalid, there is no need for new metabolite to be created)
                        new_metabolite_A = A_ecocyc

                # same as for id_A above, now with second interactor
                if id_B not in ecocyc_compounds:
                    for ortholog in session.query(OrthologEcoli).filter_by(
                            ortholog_uniprot=id_B,
                            strain_protein=strain).all():
                        if ortholog is not None:
                            interactors_B.append(
                                [ortholog.protein, ortholog.ortholog_id])
                else:
                    B_ecocyc = ecocyc_compounds[id_B]['ecocyc']
                    metabolite = session.query(Metabolite).filter_by(
                        ecocyc=B_ecocyc).first()
                    if metabolite is not None:
                        interactors_B.append([metabolite, metabolite.name])
                    else:
                        new_metabolite_B = B_ecocyc

                # store new interactor pairs from which to create interactions here
                interactor_pairs = []

                # case where no unknown metabolites were found
                if (new_metabolite_A is None) and (new_metabolite_B is None):
                    # iterate through known protein interactors, add them together to interactor_pairs
                    for interactor_A in interactors_A:
                        for interactor_B in interactors_B:
                            # only add the interactor pair if at least one of them is not a metabolite
                            if (interactor_A[0].type !=
                                    'm') | (interactor_B[0].type != 'm'):
                                interactor_pairs.append(
                                    [interactor_A, interactor_B])
                # case where there is one new metabolite (new_metabolite_A)
                elif new_metabolite_A is not None:
                    for interactor_B in interactors_B:
                        # don't add a new interactor pair if both are metabolites
                        if interactor_B[0].type != 'm':
                            # check if new metabolite exists in database (eg. if more than one ortholog was found for
                            # interactors_B, you don't want to create the same new metabolite twice)
                            metabolite = session.query(Metabolite).filter_by(
                                ecocyc=new_metabolite_A).first()
                            # create a new metabolite if it doesn't exist
                            if metabolite is None:
                                metabolite = Metabolite(
                                    id=new_metabolite_A,
                                    name=id_A,
                                    ecocyc=new_metabolite_A,
                                    pubchem=ecocyc_compounds[id_A]['pubchem'],
                                    kegg=ecocyc_compounds[id_A]['kegg'],
                                    cas=ecocyc_compounds[id_A]['cas'],
                                    chebi=ecocyc_compounds[id_A]['chebi'])
                                session.add(metabolite)
                            # add the interactor pair (for the new metabolite, make sure to add it's name (for
                            # reference later)
                            interactor_pairs.append(
                                [interactor_B, [metabolite, id_A]])
                # same as previous case, but if new metabolite is new_metabolite_B
                elif new_metabolite_B is not None:
                    for interactor_A in interactors_A:
                        if interactor_A[0].type != 'm':
                            metabolite = session.query(Metabolite).filter_by(
                                ecocyc=new_metabolite_B).first()
                            if metabolite is None:
                                metabolite = Metabolite(
                                    id=new_metabolite_B,
                                    name=id_B,
                                    ecocyc=new_metabolite_B,
                                    pubchem=ecocyc_compounds[id_B]['pubchem'],
                                    kegg=ecocyc_compounds[id_B]['kegg'],
                                    cas=ecocyc_compounds[id_B]['cas'],
                                    chebi=ecocyc_compounds[id_B]['chebi'])
                                session.add(metabolite)
                            interactor_pairs.append(
                                [interactor_A, [metabolite, id_B]])

                # iterate through all interactor pairs and create new interactions
                # note interactor_pairs will be empty if:
                #   1) both interactors were new metabolites
                #   2) one or both ecoli interactors did not have orthologs in Pseudomonas
                for interactor_pair in interactor_pairs:
                    homogenous = (
                        interactor_pair[0][0] == interactor_pair[1][0])
                    interaction = session.query(Interaction).filter(
                        Interaction.interactors.contains(
                            interactor_pair[0][0]),
                        Interaction.interactors.contains(
                            interactor_pair[1][0]),
                        Interaction.homogenous == homogenous).first()

                    source = session.query(InteractionSource).filter_by(
                        data_source='EcoCyc').first()

                    # if interaction doesn't exist, add it, and EcoCyc as a source
                    if interaction is None:
                        # if this interaction is created for first time, mark it as ortholog derived from Ecoli
                        interaction = Interaction(
                            type=(interactor_pair[0][0].type + '-' +
                                  interactor_pair[1][0].type),
                            strain=strain,
                            homogenous=homogenous,
                            interactors=[
                                interactor_pair[0][0], interactor_pair[1][0]
                            ],
                            ortholog_derived='Ecoli')
                        interaction.sources.append(source)
                        session.add(interaction), session.commit()
                    # add EcoCyc as source for interaction if it isn't already
                    elif source not in interaction.sources:
                        interaction.sources.append(source)

                    # in case the interaction already existed, make sure interactor_a and interactor_b variables for
                    # new interaction reference match up with the first and second interactors of the existing
                    # interaction (so it's easy to see which Pseudomonas interactor matches up with which Ecoli
                    # ortholog)
                    interactor_a, interactor_b = None, None
                    if interaction.interactors[0] == interactor_pair[0][0]:
                        interactor_a = interactor_pair[0][1]
                        interactor_b = interactor_pair[1][1]
                    else:
                        interactor_b = interactor_pair[0][1]
                        interactor_a = interactor_pair[1][1]

                    comment = interactor_pair[0][1] + interaction_row[
                        "INTERACTION_TYPE"] + interactor_pair[1][1]

                    # iterate through all the pmids listed as reference for given interaction
                    for pmid in interaction_row["INTERACTION_PUBMED_ID"].split(
                            ';'):
                        # check if interaction reference already exists in db
                        reference = session.query(
                            InteractionReference).filter_by(
                                pmid=pmid,
                                source_db='ecocyc',
                                comment=comment,
                                interactor_a=interactor_a,
                                interactor_b=interactor_b).first()
                        # if reference doesn't exist, create it, add the interaction to its references, and the
                        # EcoCyc source to its sources
                        if reference is None:
                            reference = InteractionReference(
                                pmid=pmid,
                                source_db='ecocyc',
                                comment=comment,
                                interactor_a=interactor_a,
                                interactor_b=interactor_b)
                            interaction.references.append(reference)
                            reference.sources.append(source)
                        # if reference does exist, add interaction to its interactions and source to its sources
                        # (if it doesn't have them already)
                        else:
                            if interaction not in reference.interactions:
                                reference.interactions.append(interaction)
                            if source not in reference.sources:
                                reference.sources.append(source)
    session.commit()
    print('ecocyc', session.query(Interaction).count())
示例#2
0
文件: IMEx.py 项目: solodova/PaintDB
def parse_ecoli_imex(session):
    with open('Data/Ecoli/PSICQUIC/IMEx.txt') as csvfile:
        reader = csv.DictReader(csvfile, delimiter='\t')
        for row in reader:
            if (row['#ID(s) interactor A'] == '-') | (row['ID(s) interactor B'] == '-'): continue
            interactors = []

            orthologs_B = []
            id_B = row['ID(s) interactor B'].split(':')
            if id_B[0] == 'uniprotkb':
                orthologs_B = session.query(OrthologEcoli).filter(OrthologEcoli.ortholog_uniprot == id_B[1]).all()
            elif id_B[0] == 'refseq':
                orthologs_B = session.query(OrthologEcoli).filter(OrthologEcoli.ortholog_refseq == id_B[1]).all()

            if len(orthologs_B) == 0: continue

            orthologs_A = []
            metabolite = None
            id_A = row['#ID(s) interactor A'].split(':')
            if id_A[0] == 'uniprotkb':
                orthologs_A = session.query(OrthologEcoli).filter(OrthologEcoli.ortholog_uniprot == id_A[1]).all()
            elif id_A[0] == 'refseq':
                orthologs_A = session.query(OrthologEcoli).filter(OrthologEcoli.ortholog_refseq == id_A[1]).all()
            elif id_A[0] == 'chebi':
                metabolite = session.query(Metabolite).filter(Metabolite.chebi == id_A[1]).first()
                if metabolite is None:
                    metabolite = Metabolite(id = id_A[1], chebi = id_A[1])
                    session.add(metabolite), session.commit()

            for ortholog_A in orthologs_A:
                for ortholog_B in orthologs_B:
                    if (ortholog_A is not None) and (ortholog_B is not None):
                        if ortholog_A.strain_protein == ortholog_B.strain_protein:
                            interactors.append([[ortholog_A.protein, ortholog_A.ortholog_id],
                                                [ortholog_B.protein, ortholog_B.ortholog_id]])

            if metabolite is not None:
                for ortholog_B in orthologs_B:
                    interactors.append([[metabolite, metabolite.id], [ortholog_B.protein, ortholog_B.ortholog_id]])

            for interactor_pair in interactors:
                homogenous = (interactor_pair[0][0] == interactor_pair[1][0])
                interaction = session.query(Interaction).filter(Interaction.interactors.contains(interactor_pair[0][0]),
                                                                Interaction.interactors.contains(interactor_pair[1][0]),
                                                                Interaction.homogenous == homogenous).first()
                if interaction is not None:
                    if interaction.ortholog_derived is None:
                        interaction.ortholog_derived = 'cfe'
                    elif 'fe' not in interaction.ortholog_derived:
                        interaction.ortholog_derived += ', cfe'
                    session.commit()
                else:
                    strain = None
                    if interactor_pair[0][0].type == 'p':
                        strain = interactor_pair[0][0].strain
                    else:
                        strain = interactor_pair[1][0].strain
                    interaction = Interaction(strain=strain,
                                              interactors=[interactor_pair[0][0], interactor_pair[1][0]],
                                              type=(interactor_pair[0][0].type + '-' + interactor_pair[1][0].type),
                                              ortholog_derived='fe')
                    session.add(interaction), session.commit()

                # interactor_a, interactor_b = None, None
                # if interaction.interactors[0] == interactor_pair[0][0]:
                #     interactor_a = interactor_pair[0][1]
                #     interactor_b = interactor_pair[1][1]
                # else:
                #     interactor_b = interactor_pair[0][1]
                #     interactor_a = interactor_pair[1][1]
                #
                # psimi_detection, psimi_db, psimi_type, author, date, confidences = None, None, None, None, None, [None]
                # if 'MI' in row['Interaction detection method(s)']:
                #     psimi_detection=row['Interaction detection method(s)'].split('MI:')[1][:4]
                # if 'MI' in row['Interaction type(s)']:
                #     psimi_type = row['Interaction type(s)'].split('MI:')[1][:4]
                # if 'MI' in row['Source database(s)']:
                #     psimi_db = row['Source database(s)'].split('MI:')[1][:4]
                # if row['Publication 1st author(s)'] != '-':
                #     author = row['Publication 1st author(s)'].split(' ')[0]
                #     date=row['Publication 1st author(s)'].split('(')[1][:-1]
                # if ('intact-miscore' in row['Confidence value(s)']) | ('author score' in row['Confidence value(s)']):
                #     del confidences[0]
                #     confidence_ids = row['Confidence value(s)'].split('|')
                #     for confidence in confidence_ids:
                #         if (confidence.split(':')[0] == 'intact-miscore') | \
                #             (confidence.split(':')[0] == 'author score'):
                #             confidences.append(confidence)
                # for confidence in confidences:
                #     reference = InteractionReference(interaction_id=interaction.id,
                #                                      psimi_detection=psimi_detection,
                #                                      detection_method=
                #                                      row['Interaction detection method(s)'].split('(')[1][:-1],
                #                                      author_ln=author,
                #                                      pub_date=date,
                #                                      pmid=
                #                                      row['Publication Identifier(s)'].split('pubmed:')[1].split('|')[0],
                #                                      psimi_type=psimi_type,
                #                                      interaction_type=row['Interaction type(s)'].split('(')[1][:-1],
                #                                      psimi_db=psimi_db,
                #                                      source_db=row['Source database(s)'].split('(')[1][:-1],
                #                                      confidence=confidence,
                #                                      interactor_a_id=interactor_a,
                #                                      interactor_b_id=interactor_b)
                #     session.add(reference)
                #
                # source = session.query(InteractionSource).filter(
                #     InteractionSource.interaction_id == interaction.id,
                #     InteractionSource.data_source == 'IMEx').first()
                #
                # if source is None:
                #     source = InteractionSource(interaction_id=interaction.id, data_source='IMEx')
                #     session.add(source)
        session.commit()
        print(session.query(Interaction).count())
示例#3
0
def parse_ecoli_uniprot(session):
    with open('Ecoli/PSICQUIC/UniProt.txt') as csvfile:
        reader = csv.DictReader(csvfile, delimiter='\t')
        for row in reader:
            interactors = []
            orthologs_B = []
            id_B = row['ID(s) interactor B'].split(':')
            if id_B[0] == 'uniprotkb':
                orthologs_B = session.query(OrthologEcoli).filter(
                    OrthologEcoli.ortholog_uniprot == id_B[1]).all()

            if len(orthologs_B) == 0: continue

            orthologs_A = []
            metabolite = None
            id_A = row['#ID(s) interactor A'].split(':')
            if id_A[0] == 'uniprotkb':
                orthologs_A = session.query(OrthologEcoli).filter(
                    OrthologEcoli.ortholog_uniprot == id_A[1]).all()
            elif id_A[0] == 'chebi':
                metabolite = session.query(Metabolite).filter(
                    Metabolite.chebi == id_A[1]).first()
                if metabolite is None:
                    metabolite = Metabolite(id=id_A[1], chebi=id_A[1])
                    session.add(metabolite), session.commit()

            for ortholog_A in orthologs_A:
                for ortholog_B in orthologs_B:
                    if (ortholog_A is not None) and (ortholog_B is not None):
                        if ortholog_A.strain_protein == ortholog_B.strain_protein:
                            interactors.append(
                                [[ortholog_A.protein, ortholog_A.ortholog_id],
                                 [ortholog_B.protein, ortholog_B.ortholog_id]])

            if metabolite is not None:
                for ortholog_B in orthologs_B:
                    interactors.append(
                        [[metabolite, metabolite.id],
                         [ortholog_B.protein, ortholog_B.ortholog_id]])

            for interactor_pair in interactors:
                homogenous = (interactor_pair[0][0] == interactor_pair[1][0])
                interaction = session.query(Interaction).filter(
                    Interaction.interactors.contains(interactor_pair[0][0]),
                    Interaction.interactors.contains(interactor_pair[1][0]),
                    Interaction.homogenous == homogenous).first()
                if interaction is not None:
                    if interaction.ortholog_derived is None:
                        interaction.ortholog_derived = 'cfe'
                    elif 'fe' not in interaction.ortholog_derived:
                        interaction.ortholog_derived += ', cfe'
                    session.commit()
                else:
                    interaction = Interaction(
                        strain=interactor_pair[0][0].strain,
                        interactors=[
                            interactor_pair[0][0], interactor_pair[1][0]
                        ],
                        type=(interactor_pair[0][0].type + '-' +
                              interactor_pair[1][0]),
                        ortholog_derived='fe')
                    if 'MI:' in row['Interaction detection method(s)']:
                        if is_experimental_psimi(
                                row['Interaction detection method(s)'].split(
                                    'MI:')[1][:4]):
                            interaction.is_experimental = 1
                    session.add(interaction), session.commit()

                interactor_a, interactor_b = None, None
                if interaction.interactors[0] == interactor_pair[0][0]:
                    interactor_a = interactor_pair[0][1]
                    interactor_b = interactor_pair[1][1]
                else:
                    interactor_b = interactor_pair[0][1]
                    interactor_a = interactor_pair[1][1]

                reference = InteractionReference(
                    interaction_id=interaction.id,
                    psimi_detection=row['Interaction detection method(s)'].
                    split('MI:')[1][:4],
                    detection_method=row['Interaction detection method(s)'].
                    split('(')[1][:-1],
                    author_ln=row['Publication 1st author(s)'].split(' ')[0],
                    pub_date=row['Publication 1st author(s)'].split(
                        '(')[1][:-1],
                    pmid=row['Publication Identifier(s)'].split(
                        'pubmed:')[1].split('|')[0],
                    psimi_type=row['Interaction type(s)'].split('MI:')[1][:4],
                    interaction_type=row['Interaction type(s)'].split(
                        '(')[1][:-1],
                    psimi_db=row['Source database(s)'].split('MI:')[1][:4],
                    source_db=row['Source database(s)'].split('(')[1][:-1],
                    confidence_score=row['Confidence value(s)'],
                    interactor_a_id=interactor_a,
                    interactor_b_id=interactor_b)
                session.add(reference)

                source = session.query(InteractionSource).filter(
                    InteractionSource.interaction_id == interaction.id,
                    InteractionSource.data_source == 'UniProt').first()

                if source is None:
                    source = InteractionSource(interaction_id=interaction.id,
                                               data_source='UniProt')
                    session.add(source)

        session.commit()
        print(session.query(Interaction).count())
示例#4
0
def parse_ecoli_bindingdb(session):
    with open('Data/Ecoli/PSICQUIC/BindingDB.txt') as csvfile:
        reader = csv.DictReader(csvfile)

        # iterate through each interaction
        for row in reader:
            uniprot_protein = None

            # check if interactor B has uniprot ID
            if 'uniprotkb' in row['ID(s) interactor B']:
                uniprot_protein = row['ID(s) interactor B'].split(
                    'uniprotkb:')[1].split('|')[0]

            if uniprot_protein is None: continue

            orthologs = []
            for ecoli_ortholog in session.query(OrthologEcoli).filter(
                    OrthologEcoli.ortholog_uniprot == uniprot_protein).all():
                if ecoli_ortholog is not None:
                    orthologs.append(
                        [ecoli_ortholog.protein, ecoli_ortholog.ortholog_id])

            if len(orthologs) == 0: continue

            ids_metabolite = row['#ID(s) interactor A'].split('|')
            chebi_metabolite, pubchem_metabolite = None, None

            # check if interactor A has ChEBI id
            for id in ids_metabolite:
                if id.split(':')[0] == 'chebi':
                    chebi_metabolite = id.split(':')[1][1:-1]

            metabolite = None

            # if interactor A has ChEBI id, query for matching metabolite
            if chebi_metabolite is not None:
                metabolite = session.query(Metabolite).filter(
                    Metabolite.chebi == chebi_metabolite).first()

            # if unable to identify metabolite based on ChEBI id, try using pubchem id
            if metabolite is None:
                alt_ids_metabolite = row['Alt. ID(s) interactor A'].split('|')

                for id in alt_ids_metabolite:
                    if id.split(':')[0] == 'pubchem':
                        pubchem_metabolite = id.split(':')[1]

                metabolite = session.query(Metabolite).filter(
                    Metabolite.id == pubchem_metabolite).first()

            # if unable to find interactor A in database, create new metabolite
            if metabolite is None:
                metabolite = Metabolite(id=pubchem_metabolite,
                                        pubchem=pubchem_metabolite,
                                        chebi=chebi_metabolite)
                session.add(metabolite), session.commit()

            for interactor in orthologs:
                interaction = session.query(Interaction).filter(
                    Interaction.interactors.contains(interactor[0]),
                    Interaction.interactors.contains(metabolite)).first()

                if interaction is not None:
                    if interaction.ortholog_derived is None:
                        interaction.ortholog_derived = 'cfe'
                    elif 'fe' not in interaction.ortholog_derived:
                        interaction.ortholog_derived += ', cfe'
                    session.commit()
                else:
                    interaction = Interaction(
                        strain=interactor.strain,
                        interactors=[metabolite, interactor[0]],
                        type='p-m',
                        ortholog_derived='fe')
                    # should ortholog interactions be marked as experimental?
                    if is_experimental_psimi(
                            row['Interaction detection method(s)'].split(
                                'MI:')[1][:4]):
                        interaction.is_experimental = 1
                    session.add(interaction), session.commit()

                interactor_a, interactor_b = '', ''
                if interaction.interactors[0] == metabolite:
                    interactor_a = metabolite.id
                    interactor_b = interactor[1]
                else:
                    interactor_b = metabolite.id
                    interactor_a = interactor[1]

                author, date, pmid = None, None, None

                if row['Publication 1st author(s)'] != '-':
                    author = row['Publication 1st author(s)'].split(' ')[0]
                    date = row['Publication 1st author(s)'].split('(')[1][:-1]
                if 'pubmed:' in row['Publication Identifier(s)']:
                    pmid = row['Publication Identifier(s)'].split(
                        'pubmed:')[1][:8]

                reference = InteractionReference(
                    interaction_id=interaction.id,
                    detection_method=row['Interaction detection method(s)'].
                    split('(')[1][:-1],
                    author_ln=author,
                    pmid=pmid,
                    pub_date=date,
                    interaction_type=row['Interaction type(s)'].split(
                        '(')[1][:-1],
                    source_db=row['Source database(s)'].split('(')[1][:-1],
                    confidence=row['Confidence value(s)'].split('(')[0],
                    interactor_a=interactor_a,
                    interactor_b=interactor_b)

                source = session.query(InteractionSource).filter(
                    InteractionSource.interaction_id == interaction.id,
                    InteractionSource.data_source == 'BindingDB').first()

                if source is None:
                    source = InteractionSource(interaction_id=interaction.id,
                                               data_source='BindingDB')
                    session.add(source)
                session.add(reference)
        session.commit()
示例#5
0
def parse_kegg(org_id, strain, sourcedb, session):
    # get pathways for organism specified by org_id
    pathways = kegg_list(database='pathway', org=org_id).read().split('path:')
    path_ids = []

    # make list of path ids to iterate through
    for path in pathways:
        if path != '':
            path_ids.append(path[:8])

    # iterate through each path and obtain interactions
    for path in path_ids:
        # get kgml representation of path
        kgml_path = read(kegg_get(path, option='kgml'))
        path_name = kgml_path._getname()
        # dictionary of compounds in current path (node_id: kegg_id)
        #   compound._getid() returns node id (only relevant in context of current path)
        #   compound._getname() returns kegg id (relevant in overall KEGG DB)
        compound_ids = {}
        for compound in kgml_path.compounds:
            compound_ids[compound._getid()] = compound._getname()[-6:]
        # go through each relation in path
        for relation in kgml_path.relations:
            relation_type = relation.element.attrib['type']

            # ignore maplink relations
            if relation_type == 'maplink': continue
            # relation._getentry1/2() returns  protein id (locus) or compound id (KEGG id)
            entries = [relation._getentry1()._getname(), relation._getentry2()._getname()]
            # if one or both interactors are listed as undefined, move on to next interaction
            if (entries[0] == 'undefined') | (entries[1] == 'undefined'): continue
            # list to hold existing interactors
            interactors = [[], []]
            # list to hold new metabolite ids for interactions with metabolites not yet in the database
            new_metabolites = [[], []]
            # go through each entry in the relation
            for num in range(0, 2):
                # each entry may contain >1 id; go through all of them
                for id in entries[num].split(' '):
                    if id == '': continue
                    # if interactor is not protein or compound, continue
                    if (id.split(':')[0] != org_id) & (id.split(':')[1] not in kegg_compounds): continue

                    # check if the id is a kegg id by searching in kegg_compounds
                    kegg_id= None
                    if id.split(':')[1] in kegg_compounds:
                        kegg_id = id.split(':')[1]

                    # check if interactor (protein) already exists
                    if (kegg_id is None) & (org_id != 'eco'):
                        interactor = session.query(Interactor).get(id.split(':')[1])
                        if interactor is not None:
                            # make sure to add None value; this will be needed to create interaction reference later
                            # None is appended rather than the interactor id because the interactor is not an ortholog
                            interactors[num].append([interactor, None])
                    # if it doesnt exist, it's not a valid protein, so check if it is a valid compound
                    elif kegg_id is not None:
                        interactor = session.query(Metabolite).filter_by(kegg = kegg_id).first()
                        # if metabolite with id was not found, append the kegg_id to new_metabolites to create
                        if interactor is None:
                            new_metabolites[num].append(kegg_id)
                        else:
                            # if the metabolite was found, add it to the existing interactor list
                            interactors[num].append([interactor, interactor.id])
                    # if parsing E. coli path, add all orthologs to interactor list
                    elif org_id == 'eco':
                        for ortholog in session.query(OrthologEcoli).filter_by(ortholog_id = id.split(':')[1],
                                                                                strain_protein = strain).all():
                            if ortholog is not None:
                                # add the id of the ecoli protein for the interaction reference later
                                interactors[num].append([ortholog.protein, id.split(':')[1]])

            # create list of interactor pairs from two separate lists
            interactor_pairs = []
            # create interactor pairs from interactors which already exist in db
            for interactor1 in interactors[0]:
                for interactor2 in interactors[1]:
                    if (interactor1[0].type != 'm') | (interactor2[0].type != 'm'):
                        interactor_pairs.append([interactor1, interactor2])
            # create interactor pair from interactors and new metabolites
            for interactor1 in interactors[0]:
                for id in new_metabolites[1]:
                    # ignore interactor pairs which would result in m-m interactions
                    if interactor1[0].type == 'm': continue
                    # Note: can query metabolite with kegg only because we updated the metabolite info first
                    metabolite = session.query(Metabolite).filter_by(kegg = id).first()
                    if metabolite is None:
                        metabolite = Metabolite(id = id, kegg = id, pubchem = kegg_compounds[id]['pubchem'],
                                                chebi = kegg_compounds[id]['chebi'])
                        session.add(metabolite)
                    interactor_pairs.append([interactor1, [metabolite, metabolite.id]])
            for interactor1 in interactors[1]:
                for id in new_metabolites[0]:
                    if interactor1[0].type == 'm': continue
                    metabolite = session.query(Metabolite).filter_by(kegg = id).first()
                    if metabolite is None:
                        metabolite = Metabolite(id = id, kegg = id, pubchem = kegg_compounds[id]['pubchem'],
                                                chebi = kegg_compounds[id]['chebi'])
                        session.add(metabolite)
                    interactor_pairs.append([interactor1, [metabolite, metabolite.id]])

            # if no interactor pairs were found, move on the the next interaction
            if len(interactor_pairs) == 0: continue

            # get all intermediates in reaction of type compound
            intermeds = []
            for subtype in relation.element.iter(tag='subtype'):
                # if the subtype element is a compound, get its node id
                if 'compound' in subtype.attrib:
                    compound_node_id = subtype.attrib['compound']
                    if compound_node_id is None: continue
                    # if the node id was not stored in the compound ids for this path, move on to the next sybtype
                    if int(compound_node_id) not in compound_ids: continue
                    # if compound id is valid, either add existing matching metabolite or create new one and add
                    kegg_id = compound_ids[int(compound_node_id)]
                    metabolite = session.query(Metabolite).filter_by(kegg = kegg_id).first()
                    if metabolite is None:
                        metabolite = Metabolite(id=kegg_id, name=kegg_compounds[kegg_id]['name'],
                                                pubchem=kegg_compounds[kegg_id]['pubchem'],
                                                chebi=kegg_compounds[kegg_id]['chebi'], kegg=kegg_id)
                        session.add(metabolite)
                    intermeds.append([metabolite, metabolite.id])

            # add protein - intermediate interactor pairs
            for interactor_list in interactors:
                for interactor in interactor_list:
                    if interactor[0].type != 'm':
                        for intermed in intermeds:
                            interactor_pairs.append([interactor, intermed])

            # go through each interaction pair and add interaction if it doesnt exist yet
            for interactor_pair in interactor_pairs:
                homogenous = (interactor_pair[0][0] == interactor_pair[1][0])
                interaction = session.query(Interaction).filter(Interaction.interactors.contains(interactor_pair[0][0]),
                                                                Interaction.interactors.contains(interactor_pair[1][0]),
                                                                Interaction.homogenous == homogenous).first()

                source = session.query(InteractionSource).filter_by(data_source=sourcedb).first()
                #create interaction if it doesnt exist yet, add source to its sources if it isn't already
                if interaction is None:
                    interaction = Interaction(type=interactor_pair[0][0].type + '-' + interactor_pair[1][0].type,
                                              strain=strain, homogenous=homogenous,
                                              interactors=[interactor_pair[0][0], interactor_pair[1][0]])
                    interaction.sources.append(source)
                    if org_id == 'eco':
                        interaction.ortholog_derived = 'Ecoli'
                    session.add(interaction), session.commit()
                elif source not in interaction.sources:
                    interaction.sources.append(source)

                # in case the interaction already existed, make sure interactor_a and interactor_b variables for
                # new interaction reference match up with the first and second interactors of the existing
                # interaction (so it's easy to see which Pseudomonas interactor matches up with which Ecoli
                # ortholog if the org id is eco)
                interactor_a, interactor_b = None, None
                if org_id == 'eco':
                    if interaction.interactors[0] == interactor_pair[0][0]:
                        interactor_a = interactor_pair[0][1]
                        interactor_b = interactor_pair[1][1]
                    else:
                        interactor_b = interactor_pair[0][1]
                        interactor_a = interactor_pair[1][1]

                # search for reference
                reference = session.query(InteractionReference).filter_by(source_db='kegg',
                                                                          comment='in ' + path_name + ' path',
                                                                          interactor_a=interactor_a,
                                                                          interactor_b=interactor_b).first()
                # if the reference doesnt exist, create it, add it to the interaction's references and add the source
                # to the reference's sources
                if reference is None:
                    reference = InteractionReference(source_db='kegg', comment='in ' + path_name + ' path',
                                                     interactor_a=interactor_a, interactor_b=interactor_b)
                    interaction.references.append(reference)
                    reference.sources.append(source)
                # if the reference does exist, add it to the interaction's reference list and add the source to the
                # reference's source list if it isn't there already
                else:
                    if interaction not in reference.interactions:
                        reference.interactions.append(interaction)
                    if source not in reference.sources:
                        reference.sources.append(source)

    session.commit()
    print(sourcedb, session.query(Interaction).count())
示例#6
0
def parse_psimi(session, file, source):
    with open(file) as csvfile:
        reader = csv.DictReader(csvfile, fieldnames=cols, delimiter='\t')

        # iterate through each interaction
        for row in reader:

            uniprot_A, refseq_A, orthologs_A, uniprot_B, refseq_B, orthologs_B = None, None, None, None, None, None
            # if one of the interactors is metabolite, save it's ids in pubchem and chebi
            pubchem, chebi = None, None
            # if one of the interactors is a metabolite, metabolite will be that metabolite and orthologs
            # will be set to the interaction's protein ortholog(s)
            metabolite_info, metabolite, orthologs = None, None, None

            # check if interactor A has uniprot or refseq id
            if 'uniprotkb' in row['interactor_A']:
                uniprot_A = row['interactor_A'].split('uniprotkb:')[1].split(
                    '|')[0]
            if 'refseq' in row['interactor_A']:
                refseq_A = row['interactor_A'].split('refseq:')[1].split(
                    '|')[0]

            # if uniprot id was found, look for orthologs matching that id
            if uniprot_A is not None:
                orthologs_A = session.query(OrthologEcoli).filter_by(
                    ortholog_uniprot=uniprot_A).all()
            # if no orthologs were found but a refseq id was found, try to find ortholog based on refseq
            if (orthologs_A is None) and (refseq_A is not None):
                orthologs_A = session.query(OrthologEcoli).filter_by(
                    ortholog_refseq=refseq_A).all()
            # if no orthologs were found for interactor A, but a uniprot or refseq does exist,
            # that means the ecoli interactor A is a protein without orthologs, so continue to next interaction
            if (orthologs_A is None) & ((uniprot_A is not None) |
                                        (refseq_A is not None)):
                continue

            # same as for interactor A above
            if 'uniprotkb' in row['interactor_B']:
                uniprot_B = row['interactor_B'].split('uniprotkb:')[1].split(
                    '|')[0]
            if 'refseq' in row['interactor_B']:
                refseq_B = row['interactor_B'].split('refseq:')[1].split(
                    '|')[0]

            if uniprot_B is not None:
                orthologs_B = session.query(OrthologEcoli).filter_by(
                    ortholog_uniprot=uniprot_B).all()
            if (orthologs_B is None) and (refseq_B is not None):
                orthologs_B = session.query(OrthologEcoli).filter_by(
                    ortholog_refseq=refseq_B).all()
            if (orthologs_B is None) & ((uniprot_B is not None) |
                                        (refseq_B is not None)):
                continue

            # if both orthologs_A and orthologs_B are None, then there are no protein interactors for this
            # interaction, so move on to the next interaction
            if (orthologs_A is None) and (orthologs_B is None): continue

            # if there were no orthologs for interactor A (and no refseq or uniprot was found),
            # search the file for pubchem or chebi ids for interactor A (as it may be a metabolite)
            if orthologs_A is None:
                if 'chebi' in row['interactor_A']:
                    chebi = row['interactor_A'].split('CHEBI:')[1].split(
                        '|')[0][:-1]
                if 'pubchem' in row['altID_A']:
                    pubchem = row['altID_A'].split('pubchem:')[1].split('|')[0]
                if (chebi is None) & ('chebi' in row['altID_A']):
                    chebi = row['altID_A'].split('CHEBI:')[1].split(
                        '|')[0][:-1]
                # if no metabolite ids were found in the interaction row, then move on to the next interaction
                # because no interactor_A was identified
                if (chebi is None) & (pubchem is None): continue
                # if a pubchem or chebi id was found, then this interaction will be a p-m interaction, so
                # set the protein interactors(orthologs) to orthologs_B
                orthologs = orthologs_B
            # other case where orthologs_B were not identified so need to check if interactor B has metabolite ids
            elif orthologs_B is None:
                if 'chebi' in row['interactor_B']:
                    chebi = row['interactor_B'].split('CHEBI:')[1].split(
                        '|')[0][:-1]
                if 'pubchem' in row['altID_B']:
                    pubchem = row['altID_B'].split('pubchem:')[1].split('|')[0]
                if (chebi is None) & ('chebi' in row['altID_B']):
                    chebi = row['altID_B'].split('CHEBI:')[1].split(
                        '|')[0][:-1]
                if (chebi is None) & (pubchem is None): continue
                orthologs = orthologs_A

            # if one of the interactors was identified to be a metabolite, search for the metabolite and set metabolite
            # variable to that value. if the metabolite doesnt exist create it
            # Note: if this point was reached, it means one of the interactors had protein orthologs,
            # so we can safely create a new metabolite knowing it will have a protein interaction partner
            if (chebi is not None) | (pubchem is not None):
                id = None
                # preferentially set id for new metabolites to be chebi
                if chebi is not None:
                    id = chebi
                    metabolite = session.query(Metabolite).filter_by(
                        chebi=chebi).first()
                # if no metabolite with chebi was found, but pubchem id exists, try to find
                # metabolite with that pubchem
                if (metabolite is None) & (pubchem is not None):
                    id = pubchem
                    metabolite = session.query(Metabolite).filter_by(
                        pubchem=pubchem).first()
                # if no metabolite was found with pubchem or chebi id, create new metabolite
                if metabolite is None:
                    metabolite = Metabolite(id=id,
                                            chebi=chebi,
                                            pubchem=pubchem)
                    session.add(metabolite)
                # if a metabolite was found, update its chebi and pubchem if it has none
                else:
                    if metabolite.pubchem is None:
                        metabolite.pubchem = pubchem
                    if metabolite.chebi is None:
                        metabolite.chebi = chebi

            # list of interactor pairs for interaction
            interactors = []
            # if no metabolite was found for interaction, it is a p-p interaction, so iterate through
            # orthologs to create interactor pairs
            if metabolite is None:
                for ortholog_A in orthologs_A:
                    for ortholog_B in orthologs_B:
                        if (ortholog_A is not None) and (ortholog_B
                                                         is not None):
                            # only add the interactor pair if the protein strains match
                            if ortholog_A.strain_protein == ortholog_B.strain_protein:
                                interactors.append([[
                                    ortholog_A.protein, ortholog_A.ortholog_id
                                ], [
                                    ortholog_B.protein, ortholog_B.ortholog_id
                                ]])
            else:
                # if a metabolite was found, add pairs of all orthologs with metabolite to interactor pairs
                for ortholog in orthologs:
                    interactors.append(
                        [[metabolite, metabolite.id],
                         [ortholog.protein, ortholog.ortholog_id]])

            # for each interactor pair, create interaction if it doesnt exist, otherwise update attributes
            for interactor_pair in interactors:
                homogenous = (interactor_pair[0][0] == interactor_pair[1][0])
                interaction = session.query(Interaction).filter(
                    Interaction.interactors.contains(interactor_pair[0][0]),
                    Interaction.interactors.contains(interactor_pair[1][0]),
                    Interaction.homogenous == homogenous).first()
                if interaction is None:
                    # since one of the interactors may be a metabolite, set strain to match strain of protein
                    strain = None
                    if interactor_pair[0][0].type == 'p':
                        strain = interactor_pair[0][0].strain
                    else:
                        strain = interactor_pair[1][0].strain
                    # if interaction did not exist, set it to Ecoli ortholog derived
                    interaction = Interaction(
                        strain=strain,
                        interactors=[
                            interactor_pair[0][0], interactor_pair[1][0]
                        ],
                        type=(interactor_pair[0][0].type + '-' +
                              interactor_pair[1][0].type),
                        ortholog_derived='Ecoli')
                    session.add(interaction), session.commit()

                ref_parameter_list = get_psimi_ref_list(row)

                # in case the interaction already existed, make sure interactor_a and interactor_b variables for
                # new interaction reference match up with the first and second interactors of the existing
                # interaction (so it's easy to see which Pseudomonas interactor matches up with which Ecoli
                # ortholog)
                interactor_a, interactor_b = None, None
                if interaction.interactors[0] == interactor_pair[0][0]:
                    interactor_a = interactor_pair[0][1]
                    interactor_b = interactor_pair[1][1]
                else:
                    interactor_b = interactor_pair[0][1]
                    interactor_a = interactor_pair[1][1]

                is_experimental = is_experimental_interaction(row)

                # check to see if source exists
                nsource = session.query(InteractionSource).filter_by(
                    data_source=source,
                    is_experimental=is_experimental).first()
                # if source doesn't exist, create and add it to the interaction's sources
                if nsource is None:
                    nsource = InteractionSource(
                        data_source=source, is_experimental=is_experimental)
                    interaction.sources.append(nsource)
                # if the source does exist, add it to the interaction's sources if it isn't already
                elif nsource not in interaction.sources:
                    interaction.sources.append(nsource)

                # go through each reference in the ref_parameter list, search for it, and if it doesnt exist create it
                for ref in ref_parameter_list:
                    nref = session.query(InteractionReference).filter_by(
                        detection_method=ref[0],
                        author_ln=ref[1],
                        pub_date=ref[2],
                        pmid=ref[3],
                        interaction_type=ref[4],
                        source_db=ref[5],
                        confidence=ref[6],
                        interactor_a=interactor_a,
                        interactor_b=interactor_b).first()
                    # if nref doesn't exist, create and add it to the interaction's reference list,
                    # and add the source to the reference's sources
                    if nref is None:
                        nref = InteractionReference(detection_method=ref[0],
                                                    author_ln=ref[1],
                                                    pub_date=ref[2],
                                                    pmid=ref[3],
                                                    interaction_type=ref[4],
                                                    source_db=ref[5],
                                                    confidence=ref[6],
                                                    interactor_a=interactor_a,
                                                    interactor_b=interactor_b)
                        interaction.references.append(nref)
                        nref.sources.append(nsource)
                    # if nref does exist, add the interaction and source to it's attributes if they aren't added
                    else:
                        if interaction not in nref.interactions:
                            nref.interactions.append(interaction)
                        if nsource not in nref.sources:
                            nref.sources.append(nsource)

    session.commit()
    print(source, session.query(Interaction).count())