'L1HTTvsRecoHTT', 'L1METPhivsCaloMETPhi', 'L1METPhivsPFMetNoMuPhi', 'L1ETMHFPhivsCaloETMHFPhi', 'L1MHTPhivsRecoMHTPhi', ] allPlots = [] allPlots.extend(allEfficiencyPlots) allPlots.extend(resolution_plots) allPlots.extend(plots2D) l1tEtSumEmuDiff = l1tDiffHarvesting.clone( plotCfgs=cms.untracked.VPSet( cms.untracked.PSet( # EMU comparison dir1=cms.untracked.string( "L1T/L1TObjects/L1TEtSum/L1TriggerVsReco"), dir2=cms.untracked.string( "L1TEMU/L1TObjects/L1TEtSum/L1TriggerVsReco"), outputDir=cms.untracked.string( "L1TEMU/L1TObjects/L1TEtSum/L1TriggerVsReco/Comparison"), plots=cms.untracked.vstring(allPlots) ), ) ) # modifications for the pp reference run variables_HI = variables allEfficiencyPlots_HI = [] add_plot = allEfficiencyPlots_HI.append for variable, thresholds in six.iteritems(variables_HI): for plot in plots[variable]: for threshold in thresholds:
"resolutionPhotonET_EB_EE", "resolutionPhotonPhi_EB", "resolutionPhotonPhi_EE", "resolutionPhotonPhi_EB_EE", "resolutionPhotonEta", ] plots2D = [ 'L1EGammaETvsElectronET_EB', 'L1EGammaETvsElectronET_EE', 'L1EGammaETvsElectronET_EB_EE', 'L1EGammaPhivsElectronPhi_EB', 'L1EGammaPhivsElectronPhi_EE', 'L1EGammaPhivsElectronPhi_EB_EE', 'L1EGammaEtavsElectronEta', # 'L1EGammaETvsPhotonET_EB', 'L1EGammaETvsPhotonET_EE', 'L1EGammaETvsPhotonET_EB_EE', 'L1EGammaPhivsPhotonPhi_EB', 'L1EGammaPhivsPhotonPhi_EE', 'L1EGammaPhivsPhotonPhi_EB_EE', 'L1EGammaEtavsPhotonEta', ] allPlots = [] allPlots.extend(allEfficiencyPlots) allPlots.extend(resolution_plots) allPlots.extend(plots2D) from DQMOffline.L1Trigger.L1TDiffHarvesting_cfi import l1tDiffHarvesting l1tEGammaEmuDiff = l1tDiffHarvesting.clone( plotCfgs=cms.untracked.VPSet( cms.untracked.PSet( # EMU comparison dir1=cms.untracked.string("L1T/L1TEGamma"), dir2=cms.untracked.string("L1TEMU/L1TEGamma"), outputDir=cms.untracked.string( "L1TEMU/L1TEGamma/Comparison"), plots=cms.untracked.vstring(allPlots) ), ) )
"resolutionJetET_HB_HE", "resolutionJetPhi_HB", "resolutionJetPhi_HE", "resolutionJetPhi_HF", "resolutionJetPhi_HB_HE", "resolutionJetEta", "resolutionMET", "resolutionMHT", "resolutionETT", "resolutionHTT", "resolutionMETPhi", "resolutionMHTPhi", ] plots2D = [ "L1METvsCaloMET", 'L1MHTvsRecoMHT', 'L1ETTvsCaloETT', 'L1HTTvsRecoHTT', 'L1METPhivsCaloMETPhi', 'L1MHTPhivsRecoMHTPhi', # jets 'L1JetETvsCaloJetET_HB', 'L1JetETvsCaloJetET_HE', 'L1JetETvsCaloJetET_HF', 'L1JetETvsCaloJetET_HB_HE', 'L1JetPhivsCaloJetPhi_HB', 'L1JetPhivsCaloJetPhi_HE', 'L1JetPhivsCaloJetPhi_HF', 'L1JetPhivsCaloJetPhi_HB_HE', 'L1JetEtavsCaloJetEta_HB', ] allPlots = [] allPlots.extend(allEfficiencyPlots) allPlots.extend(resolution_plots) allPlots.extend(plots2D) l1tStage2CaloLayer2EmuDiff = l1tDiffHarvesting.clone( plotCfgs=cms.untracked.VPSet( cms.untracked.PSet( # EMU comparison dir1=cms.untracked.string("L1T/L1TStage2CaloLayer2"), dir2=cms.untracked.string("L1TEMU/L1TStage2CaloLayer2"), outputDir=cms.untracked.string( "L1TEMU/L1TStage2CaloLayer2/Comparison"), plots=cms.untracked.vstring(allPlots) ), ) )
'L1EGammaETvsPhotonET_EB_EE', 'L1EGammaPhivsPhotonPhi_EB', 'L1EGammaPhivsPhotonPhi_EE', 'L1EGammaPhivsPhotonPhi_EB_EE', 'L1EGammaEtavsPhotonEta', ] allPlots = [] allPlots.extend(allEfficiencyPlots) allPlots.extend(resolution_plots) allPlots.extend(plots2D) from DQMOffline.L1Trigger.L1TDiffHarvesting_cfi import l1tDiffHarvesting l1tEGammaEmuDiff = l1tDiffHarvesting.clone(plotCfgs=cms.untracked.VPSet( cms.untracked.PSet( # EMU comparison dir1=cms.untracked.string("L1T/L1TEGamma"), dir2=cms.untracked.string("L1TEMU/L1TEGamma"), outputDir=cms.untracked.string("L1TEMU/L1TEGamma/Comparison"), plots=cms.untracked.vstring(allPlots)), )) # modifications for the pp reference run variables_HI = { 'electron': L1TEGammaOffline_cfi.electronEfficiencyThresholds_HI, } allEfficiencyPlots_HI = [] add_plot = allEfficiencyPlots_HI.append for variable, thresholds in variables_HI.iteritems(): for plot in plots[variable]: for threshold in thresholds: plotName = '{0}_threshold_{1}'.format(plot, threshold) add_plot(plotName)
'L1JetPhivsCaloJetPhi_HB', 'L1JetPhivsCaloJetPhi_HE', 'L1JetPhivsCaloJetPhi_HF', 'L1JetPhivsCaloJetPhi_HB_HE', 'L1JetEtavsCaloJetEta_HB', ] allPlots = [] allPlots.extend(allEfficiencyPlots) allPlots.extend(resolution_plots) allPlots.extend(plots2D) l1tStage2CaloLayer2EmuDiff = l1tDiffHarvesting.clone( plotCfgs=cms.untracked.VPSet( cms.untracked.PSet( # EMU comparison dir1=cms.untracked.string("L1T/L1TStage2CaloLayer2"), dir2=cms.untracked.string("L1TEMU/L1TStage2CaloLayer2"), outputDir=cms.untracked.string( "L1TEMU/L1TStage2CaloLayer2/Comparison"), plots=cms.untracked.vstring(allPlots)), )) # modifications for the pp reference run variables_HI = variables variables_HI['jet'] = L1TStep1.jetEfficiencyThresholds_HI allEfficiencyPlots_HI = [] add_plot = allEfficiencyPlots_HI.append for variable, thresholds in variables_HI.iteritems(): for plot in plots[variable]: for threshold in thresholds: plotName = '{0}_threshold_{1}'.format(plot, threshold) add_plot(plotName)