# serialize model to JSON model_save = model.to_json() with open("save/NNmodel1.json", "w") as json_file: json_file.write(model_save) print("Saved model to disk!") # Finally, we configure and compile our agent. You can use every built-in Keras optimizer and # even the metrics! memory = SequentialMemory(limit=10000, window_length=1) #policy1 = BoltzmannQPolicy() policy1 = EpsDisGreedyQPolicy(eps=0.0001, eps_decay=0.999) policy2 = BoltzmannQPolicy() callback12 = FileLogger(filepath='save/history12_{}'.format(timenow), interval=1) dqn8 = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, gamma=0.99, nb_steps_warmup=2000, target_model_update=1, policy=policy1) dqn8.compile(Adam(lr=1e-3), metrics=['mae']) history8 = dqn8.fit(env, nb_epsteps=3000, visualize=False, callbacks=[callback12], verbose=2)
model.add(Activation('relu')) model.add(Dense(nb_actions)) model.add(Activation('linear')) print(model.summary()) # serialize model to JSON model_save = model.to_json() with open("save/NNmodel1.json", "w") as json_file: json_file.write(model_save) print("Saved model to disk!") memory = SequentialMemory(limit=100000, window_length=1) policy1 = BoltzmannQPolicy() policy2 = EpsGreedyQPolicy() callback1 = FileLogger(filepath='save/history1_{}'.format(timenow), interval=1) callback2 = FileLogger(filepath='save/history2_{}'.format(timenow), interval=1) callback3 = FileLogger(filepath='save/history3_{}'.format(timenow), interval=1) callback4 = FileLogger(filepath='save/history4_{}'.format(timenow), interval=1) ''' dqn1 = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_warmup=1000, target_model_update=1e-2, policy=policy1) dqn1.compile(Adam(lr=1e-3), metrics=['mae']) history1 = dqn1.fit(env, nb_epsteps=100, visualize=False, callbacks=[callback1], verbose=2) dqn2 = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_warmup=1000, target_model_update=1e-2, policy=policy2) dqn2.compile(Adam(lr=1e-3), metrics=['mae']) history2 = dqn2.fit(env, nb_epsteps=100, visualize=False, callbacks=[callback2], verbose=2) dqn3 = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_warmup=1000,