示例#1
0
文件: flood.py 项目: fourmia/learn
def rainData():
    # 同步降雨智能网格文件并解析
    now = datetime.datetime.now()
    *_, elements, ftp = Writefile.readxml(glovar.trafficpath, 1)
    #*_, elements, ftp = Writefile.readxml(r'/home/cqkj/LZD/Product/Product/config/Traffic.xml', 5)
    element = elements.split(',')
    ftp = ftp.split(',')
    grib = Datainterface.GribData()
    remote_url = os.path.join(r'\\SPCC\\BEXN', now.strftime('%Y'), now.strftime('%Y%m%d'))
    grib.mirror(element[0], remote_url, element[1], ftp, element[2])
    rname = sorted(os.listdir(element[1]))[-1]
    rpath = element[1] + rname
    dataset, lat, lon, _ = Znwg.arrange((grib.readGrib(rpath)))    # result包含data,lat,lon,size
    return [interp.interpolateGridData(data, lat, lon, glovar.lat, glovar.lon) for data in dataset[:56]]
示例#2
0
def mirrorGrib(path):
    # 6.14.16测试
    # 用来同步8-20/20-8的实况格点场数据气温(开式)、降水(累计)、湿度, 20时同步今天8时数据, 8时同步昨日20时数据
    grid = Datainterface.GribData()
    now = datetime.datetime.now()
    elements, subdirs, localdirs, _, freq, *ftp = Writefile.readxml(
        path, 0)  # freq应为None
    elements = elements.split(',')
    subdirs = subdirs.split(',')
    localdirs = localdirs.split(',')  # 为三个文件夹目录
    remote_urls = [
        os.path.join(subdir, now.strftime('%Y'), now.strftime('%Y%m%d'))
        for subdir in subdirs
    ]  # 构造三个路径
    for localdir, element, remote_url in zip(localdirs, elements, remote_urls):
        grid.mirror(element, remote_url, localdir,
                    ftp)  # 同步至每个文件夹,此处待测试,需保证范围在08-20或次日20-当日08时
    # 查看各文件夹里数据信息,此处默认TEM, RAIN, RH 为08-20时的文件名列表
    RAINs, RHs, TEMs = [
        sorted(os.listdir(localdir)) for localdir in localdirs
    ]  # 零时开始至今
    e2tTems = [tem for tem in TEMs if int(tem[-7:-5]) in range(8, 21)]
    e2tRains = [rain for rain in RAINs if int(rain[-7:-5]) in range(8, 21)]
    e2tRhs = [rh for rh in RHs if int(rh[-7:-5]) in range(8, 21)]
    # 认为形状为同一分辨率下的[12, lat * lon]
    tem = [
        Znwg.arrange(grid.readGrib(os.path.join(localdirs[2], TEM)))
        for TEM in e2tTems
    ]  # temdata 包含四个要素(data, lat, lon, size), 全国范围,需插值到青海
    lat, lon = tem[0][1], tem[0][2]
    temdata = np.array([
        np.nan_to_num(
            interp.interpolateGridData(t[0] - 273.15, lat, lon, glovar.lat,
                                       glovar.lon)) for t in tem
    ])
    raindata = np.array([
        np.nan_to_num(
            interp.interpolateGridData(
                Znwg.arrange(grid.readGrib(os.path.join(localdirs[0],
                                                        RAIN)))[0], lat, lon,
                glovar.lat, glovar.lon)) for RAIN in e2tRains
    ])
    rhdata = np.array([
        np.nan_to_num(
            interp.interpolateGridData(
                Znwg.arrange(grid.readGrib(os.path.join(localdirs[1], RH)))[0],
                lat, lon, glovar.lat, glovar.lon)) for RH in e2tRhs
    ])
    return temdata, raindata, rhdata
示例#3
0
def upSnowele(gbpath, sktpath):
    # 处理积雪历史要素文件, gbpath为格点要素pkl存放路径, sktpath为cimiss插值pkl路径
    grid = Datainterface.GribData()
    gbNlist, sktList = sorted(os.listdir(gbpath))[-5:], sorted(
        os.listdir(sktpath))[-5:]  #使用正则优化
    # 获取每天11时到17时, 23时到05时的数据,考虑取最后
    eleData = [
        Znwg.arrange(grid.readGrib(os.path.join(gbpath, gblist)))
        for gblist in gbNlist
    ]
    sktData = [
        Znwg.arrange(grid.readGrib(os.path.join(gbpath, sktlist)))
        for sktlist in sktList
    ]
    return np.array(eleData), np.array(sktData)
示例#4
0
文件: wind.py 项目: fourmia/learn
def windData(path):
    # 获取数据信息
    *_, elements, ftp = Writefile.readxml(path, 2)
    element = elements.split(',')
    ftp = ftp.split(',')
    grib = Datainterface.GribData()
    remote_url = os.path.join(r'\\SPCC\\BEXN', glovar.now.strftime('%Y'),
                              glovar.now.strftime('%Y%m%d'))
    grib.mirror(element[0], remote_url, element[1], ftp, element[2])
    rname = sorted(os.listdir(element[1]))[-1]
    rpath = element[1] + rname
    dataset, lat, lon, _ = Znwg.arrange(
        (grib.readGrib(rpath)))  # result包含data,lat,lon,size
    return [
        interp.interpolateGridData(data, lat, lon, glovar.lat, glovar.lon)
        for data in dataset
    ]  # 返回插值后列表格式数据
示例#5
0
def predepth():
    # 前一时刻积水深度,此处需在服务器端测试优化
    dr = np.zeros(shape=(801, 1381))   # 目前默认前一时刻积水深度为0
    now = datetime.datetime.now()
    znwgtm = Znwg.znwgtime()
    *_, ftp = Writefile.readxml(glovar.trafficpath, 1)
    grib = Datainterface.GribData()
    remote_url = os.path.join(r'\\ANALYSIS\\CMPA', now.strftime('%Y'), now.strftime('%Y%m%d'))
    localdir = r'/home/cqkj/QHTraffic/Product/Product/mirror/rainlive'
    grib.mirror('FRT_CHN_0P05_3HOR', remote_url, localdir, ftp)
    rname = sorted(os.listdir(localdir))[-1]
    rpath = localdir + rname
    data, lat, lon, _ = Znwg.arrange((grib.readGrib(rpath)))
    data = interp.interpolateGridData(data, lat, lon, glovar.lat, glovar.lon)
    dataset = data[np.newaxis, ]                # 符合形状要求
    res = FloodModel.cal2(dataset, dr)
    return res[0]
示例#6
0
def mirrorskgrib(path):
    # 6月15待测试
    # 还需写一个同步实况小时所需数据的代码(包括三网格), 滞后15分钟,可使用同一个config文件
    grid = Datainterface.GribData()
    now = datetime.datetime.now()
    elements, subdirs, localdirs, _, freq, *ftp = Writefile.readxml(
        path, 0)  # freq应为None
    elements = elements.split(',')
    subdirs = subdirs.split(',')
    localdirs = localdirs.split(',')  # 为三个文件夹目录
    remote_urls = [
        os.path.join(subdir, now.strftime('%Y'), now.strftime('%Y%m%d'))
        for subdir in subdirs
    ]  # 构造三个路径
    for localdir, element, remote_url in zip(localdirs, elements, remote_urls):
        grid.mirror(element, remote_url, localdir,
                    ftp)  # 同步至每个文件夹,此处待测试,需保证范围在08-20或次日20-当日08时
    # 查看各文件夹里数据信息,此处默认TEM, RAIN, RH 为08-20时的文件名列表
    RAIN, RH, TEM = [
        sorted(os.listdir(localdir))[-1] for localdir in localdirs
    ]  # 零时开始至今
    tem = Znwg.arrange(grid.readGrib(os.path.join(localdirs[2], TEM)))
    lat, lon = tem[1], tem[2]
    temdata = np.array(
        np.nan_to_num(
            interp.interpolateGridData(tem[0] - 273.15, lat, lon, glovar.lat,
                                       glovar.lon)))
    raindata = np.array(
        np.nan_to_num(
            interp.interpolateGridData(
                Znwg.arrange(grid.readGrib(os.path.join(localdirs[0],
                                                        RAIN)))[0], lat, lon,
                glovar.lat, glovar.lon)))
    rhdata = np.array(
        np.nan_to_num(
            interp.interpolateGridData(
                Znwg.arrange(grid.readGrib(os.path.join(localdirs[1], RH)))[0],
                lat, lon, glovar.lat, glovar.lon)))
    Time = datetime.datetime.now().strftime('%Y%m%d%H')
    savepath = ''.join(r'/home/cqkj/QHTraffic/tmp/ele', Time, r'.pkl')
    # 存储每个时刻的降水、湿度、温度
    with open(savepath, 'wb') as f:  # 文件名称用时间区分,精确到小时
        pickle.dump([temdata, raindata, rhdata], f)
    return temdata, raindata, rhdata
    '''
示例#7
0
文件: forest.py 项目: fourmia/learn
def Weatherdata(path):
    # ?????????????????????
    elements, subdirs, localdir, _, freq, *ftp = Writefile.readxml(path, 1)
    now = datetime.datetime.now()
    elements = elements.split(',')
    subdirs = subdirs.split(',')
    remote_urls = [
        os.path.join(subdir, now.strftime('%Y'), now.strftime('%Y%m%d'))
        for subdir in subdirs
    ]  # ??????
    grib = Datainterface.GribData()
    '''
    [grib.mirror(element, remote_url, localdir, ftp, freq=freq) for element, remote_url in
     zip(elements[:-1], remote_urls[:-1])]  # ???????????????????????????(24003)
    '''
    for element, remote_url in zip(elements[:-1], remote_urls[:-1]):
        grib.mirror(element, remote_url, localdir, ftp, freq=freq)
    grib.mirror(elements[-1], remote_urls[-1], localdir, ftp,
                freq='24024')  # ???????????
    # ?????????????????????????????????????pattern
    strings = ','.join(os.listdir(localdir))
    patterns = [
        r'(\w+.EDA.*?.GRB2)', r'(\w+.ERH.*?.GRB2)', r'(\w+.TMP.*?.GRB2)',
        r'(\w+.ER24.*?.GRB2)'
    ]
    allpath = [
        localdir + sorted(Znwg.regex(pattern, strings), key=str.lower)[-1]
        for pattern in patterns
    ]  # allpath?????????????????????
    ele14list = slice(1, 74, 8)  # ??+2-1??????????????10?????14?????????
    ####????????wind????u???v??
    wind = grib.readGrib(allpath[0])[0]
    windu_v = np.array([v for _, v in wind.items()])
    windu, windv = windu_v[::2][ele14list], windu_v[1::2][ele14list]
    data = np.array([
        Znwg.arrange(grib.readGrib(path))[0][ele14list]
        for path in allpath[1:-1]
    ])  # ?????????????????
    #er, lat, lon, size = Znwg.arrange(grib.readGrib(allpath[-1], nlat=glovar.lat, nlon=glovar.lon))  # ???????????????????????????????????????
    er, lat, lon, size = Znwg.arrange(
        [grib.readGrib(allpath[-1], nlat=glovar.latt, nlon=glovar.lonn)][0])
    result = windu, windv, *data, er  # ??????????[4,10,181,277]????
    return result, lat, lon
示例#8
0
文件: forest.py 项目: fourmia/learn
def liverain(path, pklpath):
    # ???????ZNWG???????????????pickle
    # ????????????????????????????
    elements, _, localdir, historydir, freq, *ftp = Writefile.readxml(path, 1)
    now = datetime.datetime.now()
    ytd = now - datetime.timedelta(days=1)
    dir = r'//ANALYSIS//CMPA//0P05'
    remote_url = os.path.join(dir, now.strftime('%Y'), now.strftime('%Y%m%d'))
    grb = Datainterface.GribData()
    grb.mirror('FAST_CHN_0P05_DAY-PRE', remote_url, localdir, ftp,
               freq=None)  # ??????????????
    rainpaths = sorted(os.listdir(localdir))[-1]
    os.chdir(localdir)
    rainlive, lat, lon, res = Znwg.arrange(
        [grb.readGrib(rainpaths, nlat=glovar.latt, nlon=glovar.lonn)][0])
    ####??????????????????
    with open(pklpath, 'rb') as f:
        data = pickle.load(f)
    data.append(rainlive)
    # ????deque????
    with open(pklpath, 'wb') as f:
        pickle.dump(rainlive, f)
    return rainlive