''' Do a prediction: save the single-frame output (6-dim vector) of trained network. ''' import sys, os script_path = os.path.abspath(sys.argv[0]) proj_path = os.path.join('/', *script_path.split('/')[:-2]) sys.path.append(proj_path) from Test.TestManager import TestManager from Training.ErrorModelLearner import ErrorModelLearner from Dataset.DatasetLoader.generateLocalizationDataSet import config_loc_dataset if __name__ == '__main__': tm = TestManager() # Step 1, set data dataset = config_loc_dataset(tm.configuration, 'test-pre') tm.set_data(*dataset) # Step 2, set learner learner = ErrorModelLearner() tm.set_learner(learner) # Step 3, run testing tm.model_prediction()
''' import os import sys script_path = os.path.abspath(sys.argv[0]) proj_path = os.path.join('/', *script_path.split('/')[:-2]) sys.path.append(proj_path) from Test.TestManager import TestManager from Training.ErrorModelLearner import ErrorModelLearner from Dataset.DatasetLoader.generateLocalizationDataSet import config_loc_dataset if __name__ == '__main__': tm = TestManager() # Step 1, set data dataset = config_loc_dataset(tm.configuration, 'test-pre', allfrm=True) tm.set_data(*dataset) # Step 2, set learner learner = ErrorModelLearner() tm.set_learner(learner) # Step 3, run testing fileout = tm.model_prediction() infofile = fileout + '.info.csv' tm.transNetPrediction2Mat(fileout, infofile, type='info') # Step 1, set data
''' Train the error mapping model. ''' import sys, os script_path = os.path.abspath(sys.argv[0]) proj_path = os.path.join('/', *script_path.split('/')[:-2]) sys.path.append(proj_path) from Training.TrainingManager import TrainingManager from Training.ErrorModelLearner import ErrorModelLearner from Dataset.DatasetLoader.generateLocalizationDataSet import config_loc_dataset if __name__ == '__main__': tm = TrainingManager() # Step 1, set data dataset = config_loc_dataset(tm.configuration, 'train') tm.set_data(*dataset) # Step 2, set learner learner = ErrorModelLearner() tm.set_learner(learner) # Step 3, run training tm.train()
''' Do a prediction: save the single-frame output (6-dim vector) of trained network. ''' import sys, os script_path = os.path.abspath(sys.argv[0]) proj_path = os.path.join('/', *script_path.split('/')[:-2]) sys.path.append(proj_path) from Test.TestManager import TestManager from Training.ErrorModelLearner import ErrorModelLearner from Dataset.DatasetLoader.generateLocalizationDataSet import config_loc_dataset if __name__ == '__main__': tm = TestManager() # Step 1, set data dataset = config_loc_dataset(tm.configuration, 'test-viewcov') tm.set_data(*dataset) # Step 2, set learner learner = ErrorModelLearner() tm.set_learner(learner) # Step 3, run testing tm.visualize_covariance_sample()
''' Find the best scale for cov from traditional method ''' import sys, os script_path = os.path.abspath(sys.argv[0]) proj_path = os.path.join('/', *script_path.split('/')[:-2]) sys.path.append(proj_path) from Test.TestManager import TestManager from Training.ErrorModelLearner import ErrorModelLearner from Dataset.DatasetLoader.generateLocalizationDataSet import config_loc_dataset if __name__ == '__main__': tm = TestManager() # Step 1, set data dataset = config_loc_dataset(tm.configuration, 'test-acc') tm.set_data(*dataset) # Step 2, run testing scalelist = [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000] tm.find_best_covscale(scalelist)