def predict_ms(self): base = 'RIKEN_PlaSMA_' mode = self.ModInput.currentText()[0:3] eneg = self.EgyInput.currentText()[0:2] smi = self.SmiInput.toPlainText() model = load_model(base + mode + '_' + eneg) ms = model_predict(smi, model) # plot_ms(ms) self.F = MyFigure(width=3, height=2, dpi=100) self.F.axes.cla() self.F.axes.vlines(ms['mz'], np.zeros(ms.shape[0]), np.array(ms['intensity']), 'red') self.F.axes.axhline(0, color='black') self.gridlayout = QtWidgets.QGridLayout(self.groupBox) self.gridlayout.addWidget(self.F, 0, 1) self.gridlayout.deleteLater()
""" import numpy as np import pandas as pd import keras import matplotlib.pyplot as plt from rdkit import Chem from tqdm import tqdm from libmetgem import msp from PyCFMID.PyCFMID import cfm_predict from DeepFrag.utils import load_model, ms_correlation from DeepFrag.utils import read_ms, morgan_fp, ms2vec, model_predict, plot_compare_ms from DeepFrag.loss import pearson, loss pretrain_model = 'simulated_Pos_10V' model = load_model(pretrain_model) msp_file = 'RIKEN_PlaSMA/RIKEN_PlaSMA_Pos.msp' # parser dataset ms = [] smiles = [] energies = [] modes = [] parser = msp.read(msp_file) for i, (params, data) in enumerate(parser): if 'collisionenergy' in params: energy = params['collisionenergy'] else: energy = '' if 'precursortype' in params: ion_mode = params['precursortype']
import pandas as pd import keras import matplotlib.pyplot as plt from tqdm import tqdm from libmetgem import msp from rdkit import Chem from rdkit.Chem import Draw from rdkit.Chem.Draw import IPythonConsole from PyCFMID.PyCFMID import cfm_predict, fraggraph_gen from DeepFrag.utils import load_model, ms_correlation from DeepFrag.utils import read_ms, morgan_fp, ms2vec, model_predict, plot_compare_ms from DeepFrag.loss import pearson, loss from DeepFrag.annotate import annotate_ms msp_file = 'RIKEN_PlaSMA/RIKEN_PlaSMA_Pos.msp' model = load_model('RIKEN_PlaSMA_Pos_10') pretrain = load_model('simulated_Pos_10V') result = pd.read_csv('Result/RIKEN_PlaSMA_Pos_10.csv') # parser dataset ms = [] smiles = [] energies = [] modes = [] parser = msp.read(msp_file) for i, (params, data) in enumerate(parser): if 'collisionenergy' in params: energy = params['collisionenergy'] else: energy = '' if 'precursortype' in params: