def createDensity( Filename_in, #MeanNormTuple, inbranches, modes, nevents, dimension1, dimension2, counterbranch, offsets=None): from DeepJetCore.compiled import c_meanNormZeroPad layerbranch = '' maxlayers = 1 layeroffset = 0 norms = [1 for x in range(len(inbranches))] means = [] if not offsets: means = [0 for x in range(len(inbranches))] else: means = offsets x_branch, x_center, x_bins, x_width = dimension1 y_branch, y_center, y_bins, y_width = dimension2 array = numpy.zeros((nevents, x_bins, y_bins, maxlayers, len(inbranches)), dtype='float32') c_meanNormZeroPad.fillDensityLayers( array, norms, means, inbranches, modes, layerbranch, maxlayers, layeroffset, Filename_in, counterbranch, x_branch, x_center, x_bins, x_width, y_branch, y_center, y_bins, y_width, ) array = numpy.reshape(array, (nevents, x_bins, y_bins, len(inbranches))) return array
def createDensityLayers(Filename_in, MeanNormTuple, inbranches, modes, layerbranch, maxlayers, layeroffset, nevents, dimension1, dimension2, counterbranch, scales=None): from DeepJetCore.compiled import c_meanNormZeroPad if not scales: norms = [1 for x in range(len(inbranches))] else: norms = scales if not len(scales) == len(inbranches): raise ValueError('Scales length must match number of branches') means = [0 for x in range(len(inbranches))] x_branch, x_center, x_bins, x_width = dimension1 y_branch, y_center, y_bins, y_width = dimension2 array = numpy.zeros((nevents, x_bins, y_bins, maxlayers, len(inbranches)), dtype='float32') c_meanNormZeroPad.fillDensityLayers( array, norms, means, inbranches, modes, layerbranch, maxlayers, layeroffset, Filename_in, counterbranch, x_branch, x_center, x_bins, x_width, y_branch, y_center, y_bins, y_width, ) return array
def createDensityLayers(Filename_in, MeanNormTuple, inbranches, modes, layerbranch, maxlayers, layeroffset, nevents, dimension1, dimension2, counterbranch): from DeepJetCore.compiled import c_meanNormZeroPad norms = [1 for x in range(len(inbranches))] means = [0 for x in range(len(inbranches))] x_branch, x_center, x_bins, x_width = dimension1 y_branch, y_center, y_bins, y_width = dimension2 array = numpy.zeros((nevents, x_bins, y_bins, maxlayers, len(inbranches)), dtype='float32') c_meanNormZeroPad.fillDensityLayers( array, norms, means, inbranches, modes, layerbranch, maxlayers, layeroffset, Filename_in, counterbranch, x_branch, x_center, x_bins, x_width, y_branch, y_center, y_bins, y_width, ) return array