import numpy as np import pandas as pd from DeepTCR.DeepTCR import DeepTCR_SS import seaborn as sns import matplotlib.pyplot as plt import matplotlib matplotlib.rc('font', family='Arial') DTCRS = DeepTCR_SS('reg_flu', device=2) alpha = 'CAGAGSQGNLIF' beta = 'CASSSRSSYEQYF' input_alpha = np.array([alpha, alpha]) input_beta = np.array([beta, beta]) pred = DTCRS.Sequence_Inference(input_alpha, input_beta) fig_rsl, ax_rsl = DTCRS.Residue_Sensitivity_Logo(input_alpha, input_beta, background_color='black', Load_Prev_Data=False) fig_rsl.savefig('flu_rsl.png', dpi=1200, facecolor='black') fig, ax = plt.subplots(1, 2, figsize=(10, 5)) sns.swarmplot(data=DTCRS.df_alpha_list[0], x='pos', y='high', ax=ax[0]) i = 0 ax[i].set_xlabel('') ax[i].set_ylabel('') ax[i].set_xticklabels(list(alpha), size=24) ax[i].tick_params(axis='y', labelsize=18) ax[i].spines['right'].set_visible(False) ax[i].spines['top'].set_visible(False)
contains('|'.join(remove), regex=True)] remove = ['0', '\?', 'O', '9', '\*', 'B', 'X'] df_tcr = df_tcr[~df_tcr[cdr3_alpha_col].str. contains('|'.join(remove), regex=True)] df_tcr = df_tcr[~df_tcr[cdr3_beta_col].str. contains('|'.join(remove), regex=True)] df_tcr[cdr3_alpha_col] = df_tcr[cdr3_alpha_col].str.replace('[^\x00-\x7F]', '') df_tcr[cdr3_beta_col] = df_tcr[cdr3_beta_col].str.replace('[^\x00-\x7F]', '') temp = df_tcr[df_tcr[epitope_col] == epitope] temp = temp.groupby([cdr3_alpha_col, cdr3_beta_col]).agg({ epitope_col: 'first' }).reset_index() temp = temp[~temp['CDR3.alpha.aa'].str.contains('#')] temp['seq_id'] = temp[cdr3_alpha_col] + '_' + temp[cdr3_beta_col] temp = temp[~temp['seq_id'].isin(df_train_pep['seq_id'])] out = DTCRS.Sequence_Inference(beta_sequences=np.array(temp[cdr3_beta_col]), alpha_sequences=np.array(temp[cdr3_alpha_col])) df_true = pd.DataFrame() df_true['pred'] = np.squeeze(out) df_true['label'] = 1.0 temp = df_tcr[df_tcr[epitope_col] != epitope] out = DTCRS.Sequence_Inference(beta_sequences=np.array(temp[cdr3_beta_col]), alpha_sequences=np.array(temp[cdr3_alpha_col])) df_false = pd.DataFrame() df_false['pred'] = np.squeeze(out) df_false['label'] = 0.0 df_preds = pd.concat([df_true, df_false]) df_preds.to_csv('mart1_mcpas_val.csv', index=False)
matplotlib.rc('font', family='Arial') #Instantiate training object DTCRU = DeepTCR_SS('Murine_Sup') #Load Data # DTCRU.Get_Data(directory='../../Data/Murine_Antigens',Load_Prev_Data=False, # aa_column_beta=0,count_column=1,v_beta_column=2,j_beta_column=3, # classes=['Db-F2', 'Db-M45', 'Db-NP', 'Db-PA', 'Db-PB1']) # DTCRU.Monte_Carlo_CrossVal(folds=5) DTCR_inf = DeepTCR_SS('load') DTCR_inf.Get_Data(directory='../../Data/Murine_Antigens', Load_Prev_Data=False, aa_column_beta=0, count_column=1, v_beta_column=2, j_beta_column=3, classes=['Kb-M38', 'Kb-SIY', 'Kb-TRP2', 'Kb-m139']) beta_sequences = DTCR_inf.beta_sequences v_beta = DTCR_inf.v_beta j_beta = DTCR_inf.j_beta out = DTCRU.Sequence_Inference(beta_sequences=beta_sequences, v_beta=v_beta, j_beta=j_beta) out2 = DTCRU.Sequence_Inference(beta_sequences=beta_sequences, v_beta=v_beta, j_beta=j_beta)