示例#1
0
def run(record):
    
    att = AttentionModel(config="/home/b.weinstein/DeepTreeAttention/conf/tree_config.yml")
    
    ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
    site_classes_file = "{}/data/processed/site_class_labels.csv".format(ROOT)
    site_classdf  = pd.read_csv(site_classes_file)
    site_label_dict = site_classdf.set_index("siteID").label.to_dict()    
    
    domain_classes_file = "{}/data/processed/domain_class_labels.csv".format(ROOT)
    domain_classdf  = pd.read_csv(domain_classes_file)
    domain_label_dict = domain_classdf.set_index("domainID").label.to_dict()  
    
    species_classes_file = "{}/data/processed/species_class_labels.csv".format(ROOT)
    species_classdf  = pd.read_csv(species_classes_file)
    species_label_dict = species_classdf.set_index("taxonID").label.to_dict()
    
    rgb_pool = glob.glob(att.config["rgb_sensor_pool"], recursive=True)
    hyperspectral_pool = glob.glob(att.config["hyperspectral_sensor_pool"], recursive=True)
    
    #Convert h5 hyperspec
    renamed_record = record.replace("itc_predictions", "image")
    hyperspec_path = lookup_and_convert(shapefile=renamed_record, rgb_pool=rgb_pool, hyperspectral_pool=hyperspectral_pool, savedir=att.config["hyperspectral_tif_dir"])
    
    rgb_path = find_sensor_path(shapefile=renamed_record, lookup_pool=rgb_pool)
    
    #infer site
    site = site_from_path(renamed_record)
    numeric_site = site_label_dict[site] 
    
    domain = domain_from_path(renamed_record)
    numeric_domain = domain_label_dict[domain] 
    
    #infer elevation
    h5_path = find_sensor_path(shapefile=renamed_record, lookup_pool=hyperspectral_pool)    
    elevation = elevation_from_tile(h5_path)
    
    #Generate record when complete   
    df = pd.read_csv(record)
    
    # hot fix the heights for the moment.
    heights = np.repeat(10, df.shape[0])
    
    tfrecords = att.generate(
        csv_file=record,
        HSI_sensor_path=hyperspec_path,
        RGB_sensor_path=rgb_path,
        chunk_size=500,
        train=True,
        domain=numeric_domain,
        site=numeric_site,
        heights=heights,
        elevation=elevation,
        label_column="filtered_taxonID",
        species_label_dict=species_label_dict
    )
    
    return tfrecords
示例#2
0
def run(record, savedir, raw_box_dir):
    """Take a plot of deepforest prediction (see prepare_field_data.py) and generate crops for training/evalution"""
    #Read record
    df = gpd.read_file(record)
    
    #get bounding boxes from the surrounding trees
    basename = os.path.basename(record)
    raw_boxes ="{}/{}".format(raw_box_dir, basename)
    
    att = AttentionModel(config="/home/b.weinstein/DeepTreeAttention/conf/tree_config.yml")
    ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
    
    site_classes_file = "{}/data/processed/site_class_labels.csv".format(ROOT)
    site_classdf  = pd.read_csv(site_classes_file)
    site_label_dict = site_classdf.set_index("siteID").label.to_dict()    
    
    domain_classes_file = "{}/data/processed/domain_class_labels.csv".format(ROOT)
    domain_classdf  = pd.read_csv(domain_classes_file)
    domain_label_dict = domain_classdf.set_index("domainID").label.to_dict()  
    
    species_classes_file = "{}/data/processed/species_class_labels.csv".format(ROOT)
    species_classdf  = pd.read_csv(species_classes_file)
    species_label_dict = species_classdf.set_index("taxonID").label.to_dict()
    
    rgb_pool = glob.glob(att.config["rgb_sensor_pool"], recursive=True)
    hyperspectral_pool = glob.glob(att.config["hyperspectral_sensor_pool"], recursive=True)
    
    #Convert h5 hyperspec
    hyperspec_path = lookup_and_convert(bounds=df.total_bounds, rgb_pool=rgb_pool, hyperspectral_pool=hyperspectral_pool, savedir=att.config["hyperspectral_tif_dir"])
    rgb_path = find_sensor_path(bounds=df.total_bounds, lookup_pool=rgb_pool)
    
    #infer site, only 1 per plot.
    site = df.siteID.unique()[0]
    numeric_site = site_label_dict[site] 
    
    domain = df.domainID.unique()[0]
    numeric_domain = domain_label_dict[domain] 
    
    #infer elevation
    h5_path = find_sensor_path(bounds=df.total_bounds, lookup_pool=hyperspectral_pool)    
    elevation = elevation_from_tile(h5_path)
    
    att.ensemble_model = tf.keras.models.load_model("{}/Ensemble.h5".format(att.config["neighbors"]["model_dir"]), custom_objects={"WeightedSum":WeightedSum})    
    ensemble_model = tf.keras.Model(att.ensemble_model.inputs, att.ensemble_model.get_layer("ensemble_learn").output)
    
    #Generate record when complete   
    tfrecords = att.generate(
        shapefile=record,
        raw_boxes=raw_boxes,
        HSI_sensor_path=hyperspec_path,
        RGB_sensor_path=rgb_path,
        chunk_size=500,
        train=True,
        domain=numeric_domain,
        site=numeric_site,
        elevation=elevation,
        label_column="taxonID",
        species_label_dict=species_label_dict,
        ensemble_model=None,
        savedir=savedir
    )
    
    return tfrecords
#Linear metadata model for testing purposes
from comet_ml import Experiment
import tensorflow as tf
from DeepTreeAttention.trees import AttentionModel
from DeepTreeAttention.models import metadata
from DeepTreeAttention.callbacks import callbacks
import pandas as pd

model = AttentionModel(
    config="/home/b.weinstein/DeepTreeAttention/conf/tree_config.yml")
model.create()

#Log config
experiment = Experiment(project_name="neontrees", workspace="bw4sz")
experiment.log_parameters(model.config["train"])
experiment.log_parameters(model.config["evaluation"])
experiment.log_parameters(model.config["predict"])
experiment.add_tag("metadata")

##Train
#Train see config.yml for tfrecords path with weighted classes in cross entropy
model.read_data(mode="metadata")

#Cree
inputs, outputs = metadata.metadata_model(
    classes=model.config["train"]["classes"])
meta_model = tf.keras.Model(inputs=inputs,
                            outputs=outputs,
                            name="DeepTreeAttention")

meta_model.compile(loss='categorical_crossentropy',
示例#4
0
            
if __name__ == "__main__":
    sleep(randint(0,20))
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    save_dir = "{}/{}".format("/orange/idtrees-collab/DeepTreeAttention/snapshots/",timestamp)
    os.mkdir(save_dir)
    
    experiment = Experiment(project_name="neontrees", workspace="bw4sz")
    experiment.add_tag("Train")

    #Create output folder
    experiment.log_parameter("timestamp",timestamp)
    experiment.log_parameter("log_dir",save_dir)
    
    #Create a class and run
    model = AttentionModel(config="/home/b.weinstein/DeepTreeAttention/conf/tree_config.yml", log_dir=save_dir)
    model.create()
    
    if model.config["train"]["pretraining_dir"]:
        model.HSI_model.load_weights("{}/HSI_model.h5".format(model.config["train"]["pretraining_dir"]))
        
    #Log config
    experiment.log_parameters(model.config["train"])
    experiment.log_parameters(model.config["evaluation"])    
    experiment.log_parameters(model.config["predict"])
    experiment.log_parameters(model.config["train"]["ensemble"])
    
    ##Train
    #Train see config.yml for tfrecords path with weighted classes in cross entropy
    model.read_data(mode="HSI")
    
示例#5
0
from time import sleep
from random import randint
from datetime import datetime
import os
from comet_ml import Experiment
from DeepTreeAttention.trees import AttentionModel

sleep(randint(0,20))
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
save_dir = "{}/{}".format("/orange/idtrees-collab/DeepTreeAttention/snapshots/",timestamp)
os.mkdir(save_dir)

experiment = Experiment(project_name="neontrees", workspace="bw4sz")
experiment.add_tag("Cleaning")

#Create output folder
experiment.log_parameter("timestamp",timestamp)
experiment.log_parameter("log_dir",save_dir)

#Create a class and run
model = AttentionModel(config="/home/b.weinstein/DeepTreeAttention/conf/tree_config.yml", log_dir=save_dir)
model.read_data("HSI_autoencoder")
train_df, test_df  = model.find_outliers()
train_df.to_file("{}/train_outliers.shp".format(save_dir))
test_df.to_file("{}/test_outliers.shp".format(save_dir))
示例#6
0
def mod(tmpdir):
    mod = AttentionModel(config="conf/tree_config.yml")   
    mod.sites = 2
    mod.domains = 2    
    mod.RGB_channels = 3
    mod.HSI_channels = 3
    
    train_dir = tmpdir.mkdir("train")
    
    label_file = "{}/label_file.csv".format(train_dir)
    
    mod.config["train"]["tfrecords"] = train_dir
    mod.classes_file = "data/processed/species_class_labels.csv"
    
    domain = "D17"
    numeric_domain = domain_label_dict[domain]   

    site = "BART"    
    numeric_site = site_label_dict[site]
    
    created_records = mod.generate(shapefile=test_predictions, site=numeric_site, domain=numeric_domain, elevation=100/1000,
                                   HSI_sensor_path=test_sensor_tile,
                                   RGB_sensor_path=test_sensor_tile,
                                   train=True,
                                   chunk_size=2,
                                   savedir = mod.config["train"]["tfrecords"])
    
    #create a fake label file
    pd.DataFrame({"taxonID":["Ben","Jon"],"label":[0,1]}).to_csv(label_file)
    mod.classes_file = label_file
    
    mod.create()
    mod.ensemble(experiment=None)
        
    return mod
示例#7
0
            _predict_(shapefile, model_path, savedir=savedir, create_records=generate)
            
if __name__ == "__main__":
    experiment = Experiment(project_name="neontrees", workspace="bw4sz")

    #Create output folder
    #Sleep for a moment to allow queries to build up in SLURM queue
    sleep(randint(0,10))
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    save_dir = "{}/{}".format("/orange/idtrees-collab/DeepTreeAttention/snapshots/",timestamp)
    os.mkdir(save_dir)
    
    experiment.log_parameter("timestamp",timestamp)
    
    #Create a class and run
    model = AttentionModel(config="/home/b.weinstein/DeepTreeAttention/conf/tree_config.yml")
    model.create()
        
    #Log config
    experiment.log_parameters(model.config["train"])
    experiment.log_parameters(model.config["predict"])
    
    ##Train
    #Train see config.yml for tfrecords path with weighted classes in cross entropy
    model.read_data(validation_split=True)
    class_weight = model.calc_class_weight()
    
    ## Train subnetwork
    experiment.log_parameter("Train subnetworks", True)
    with experiment.context_manager("spatial_subnetwork"):
        print("Train spatial subnetwork")
示例#8
0
#Linear metadata model for testing purposes
from comet_ml import Experiment
import tensorflow as tf
from DeepTreeAttention.trees import AttentionModel
from DeepTreeAttention.models import metadata
from DeepTreeAttention.callbacks import callbacks
import pandas as pd
from tensorflow.keras.models import load_model
from DeepTreeAttention.models.layers import WeightedSum
from random import randint
from time import sleep
from datetime import datetime
import os

model = AttentionModel(
    config="/home/b.weinstein/DeepTreeAttention/conf/tree_config.yml")
model.create()

sleep(randint(0, 20))
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
save_dir = "{}/{}".format(
    "/orange/idtrees-collab/DeepTreeAttention/snapshots/", timestamp)
os.mkdir(save_dir)

#Log config
experiment = Experiment(project_name="neontrees", workspace="bw4sz")
experiment.log_parameters(model.config["train"])
experiment.log_parameters(model.config["evaluation"])
experiment.log_parameters(model.config["predict"])
experiment.add_tag("RGB")
experiment.log_parameter("timestamp", timestamp)
示例#9
0
def mod(tmpdir):
    mod = AttentionModel(config="conf/tree_config.yml")
    mod.sites = 2
    mod.domains = 2
    mod.RGB_channels = 3
    mod.HSI_channels = 3

    train_dir = tmpdir.mkdir("train")

    label_file = "{}/label_file.csv".format(train_dir)

    shp = gpd.read_file(test_predictions)
    mod.config["train"]["tfrecords"] = train_dir
    mod.classes_file = "data/processed/species_class_labels.csv"
    created_records = mod.generate(shapefile=test_predictions,
                                   site=0,
                                   domain=1,
                                   elevation=100,
                                   heights=np.random.random(shp.shape[0]),
                                   HSI_sensor_path=test_sensor_tile,
                                   RGB_sensor_path=test_sensor_tile,
                                   train=True,
                                   chunk_size=2)

    #create a fake label file
    pd.DataFrame({
        "taxonID": ["Ben", "Jon"],
        "label": [0, 1]
    }).to_csv(label_file)
    mod.classes_file = label_file

    mod.create()
    mod.ensemble(experiment=None, train=False)

    #turn ensemble model into a feature extractor of the 2nd to last layer.
    mod.ensemble_model = tfk.Model(
        mod.ensemble_model.inputs,
        mod.ensemble_model.get_layer("submodel_concat").output)

    return mod
示例#10
0
sleep(randint(0, 20))
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
save_dir = "{}/{}".format(
    "/orange/idtrees-collab/DeepTreeAttention/snapshots/", timestamp)
os.mkdir(save_dir)

experiment = Experiment(project_name="neontrees", workspace="bw4sz")
experiment.add_tag("Train")

#Create output folder
experiment.log_parameter("timestamp", timestamp)
experiment.log_parameter("log_dir", save_dir)

#Create a class and run
model = AttentionModel(
    config="/home/b.weinstein/DeepTreeAttention/conf/tree_config.yml",
    log_dir=save_dir)
model.read_data("HSI")
model.create()

baseline = vanilla.create(
    height=model.config["train"]["HSI"]["crop_size"],
    width=model.config["train"]["HSI"]["crop_size"],
    channels=model.config["train"]["HSI"]["sensor_channels"],
    classes=model.classes)
baseline.compile(loss="categorical_crossentropy",
                 optimizer=tf.keras.optimizers.Adam(
                     lr=float(model.config["train"]["learning_rate"])),
                 metrics=[tf.keras.metrics.CategoricalAccuracy(name='acc')])

labeldf = pd.read_csv(model.classes_file)
示例#11
0
sleep(randint(0, 10))
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
save_dir = "{}/{}".format(
    "/orange/idtrees-collab/DeepTreeAttention/snapshots/", timestamp)
os.mkdir(save_dir)

experiment = Experiment(project_name="neontrees", workspace="bw4sz")
experiment.add_tag("neighbors")

#Create output folder
experiment.log_parameter("timestamp", timestamp)
experiment.log_parameter("log_dir", save_dir)

#Create a class and run
model = AttentionModel(
    config="/home/b.weinstein/DeepTreeAttention/conf/tree_config.yml",
    log_dir=save_dir)
model.create()
ensemble_model = tfk.models.load_model(
    "{}/Ensemble.h5".format(model.config["neighbors"]["model_dir"]),
    custom_objects={"WeightedSum": WeightedSum})
model.read_data("neighbors")

experiment.log_parameters(model.config["neighbors"])

neighbor = neighbors_model.create(
    ensemble_model=ensemble_model,
    k_neighbors=model.config["neighbors"]["k_neighbors"],
    classes=model.classes,
    freeze=model.config["neighbors"]["freeze"])
def mod(tmpdir):
    mod = AttentionModel(config="conf/tree_config.yml")

    train_dir = tmpdir.mkdir("train")
    predict_dir = tmpdir.mkdir("predict")
    label_file = "{}/label_file.csv".format(train_dir)

    #create a fake label file
    pd.DataFrame({
        "taxonID": ["Ben", "Jon"],
        "label": [0, 1]
    }).to_csv(label_file)

    config = {}
    train_config = {}
    train_config["tfrecords"] = train_dir
    train_config["batch_size"] = 1
    train_config["epochs"] = 1
    train_config["steps"] = 1
    train_config["gpus"] = 1
    train_config["crop_size"] = 20
    train_config["shuffle"] = True
    train_config["weighted_sum"] = False
    train_config["classes"] = 2
    train_config["species_class_file"] = label_file

    #evaluation
    eval_config = {}
    eval_config["tfrecords"] = None
    eval_config["steps"] = 1
    eval_config["ground_truth_path"] = "data/processed/test.shp"

    predict_config = {}
    predict_config["tfrecords"] = predict_dir

    config["train"] = train_config
    config["evaluation"] = eval_config
    config["predict"] = predict_config

    #Replace config for testing env
    for key, value in config.items():
        for nested_key, nested_value in value.items():
            mod.config[key][nested_key] = nested_value

    #Update the inits
    mod.RGB_size = mod.config["train"]["RGB"]["crop_size"]
    mod.HSI_size = mod.config["train"]["HSI"]["crop_size"]
    mod.HSI_channels = 369
    mod.RGB_channels = 3
    mod.extend_HSI_box = mod.config["train"]["HSI"]["extend_box"]
    mod.classes_file = label_file
    mod.train_shp = pd.DataFrame({
        "taxonID": ["Jon", "Ben"],
        "siteID": [0, 1],
        "domainID": [0, 1],
        "plotID": [0, 1],
        "canopyPosition": ["a", "b"],
        "scientific": ["genus species", "genus species"]
    })
    mod.train_shp.index = [2, 7]
    mod.sites = 23
    mod.domains = 15

    #Create a model with input sizes
    mod.create()

    return mod
示例#13
0
#Linear metadata model for testing purposes
from comet_ml import Experiment
import tensorflow as tf
from DeepTreeAttention.trees import AttentionModel
from DeepTreeAttention.models import metadata
from DeepTreeAttention.callbacks import callbacks
import pandas as pd

model = AttentionModel(
    config="/home/b.weinstein/DeepTreeAttention/conf/tree_config.yml")
model.create()

#Log config
experiment = Experiment(project_name="neontrees", workspace="bw4sz")
experiment.log_parameters(model.config["train"])
experiment.log_parameters(model.config["evaluation"])
experiment.log_parameters(model.config["predict"])
experiment.add_tag("metadata")

##Train
#Train see config.yml for tfrecords path with weighted classes in cross entropy
with experiment.context_manager("metadata"):
    model.read_data(mode="metadata")
    class_weight = model.calc_class_weight()
    model.train(submodel="metadata",
                experiment=experiment,
                class_weight=class_weight)
示例#14
0
from DeepTreeAttention.generators import neighbors

sleep(randint(0,20))
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
save_dir = "{}/{}".format("/orange/idtrees-collab/DeepTreeAttention/snapshots/",timestamp)
os.mkdir(save_dir)

experiment = Experiment(project_name="neontrees", workspace="bw4sz")
experiment.add_tag("Cleaning")

#Create output folder
experiment.log_parameter("timestamp",timestamp)
experiment.log_parameter("log_dir",save_dir)

#Create a class and run
model = AttentionModel(config="/home/b.weinstein/DeepTreeAttention/conf/tree_config.yml", log_dir=save_dir)
model.create()
model.ensemble_model = tfk.models.load_model("{}/Ensemble.h5".format(model.config["neighbors"]["model_dir"]), custom_objects={"WeightedSum":WeightedSum})
hyperspectral_pool = glob.glob(model.config["hyperspectral_sensor_pool"], recursive=True)

#Load field data
ROOT = os.path.dirname(os.path.dirname(ROOT))
train = gpd.read_file("{}/data/processed/train.shp".format(ROOT))
test = gpd.read_file("{}/data/processed/test.shp".format(ROOT))


site_classes_file =  "{}/data/processed/site_class_labels.csv".format(ROOT)     
site_classdf  = pd.read_csv(site_classes_file)
site_label_dict = site_classdf.set_index("siteID").label.to_dict()

domain_classes_file =  "{}/data/processed/domain_class_labels.csv".format(ROOT)     
示例#15
0
#Linear metadata model for testing purposes
from comet_ml import Experiment
import tensorflow as tf
from DeepTreeAttention.trees import AttentionModel
from DeepTreeAttention.models import metadata
from DeepTreeAttention.callbacks import callbacks
import pandas as pd

model = AttentionModel(config="/home/b.weinstein/DeepTreeAttention/conf/tree_config.yml")
model.create()

#Log config
experiment = Experiment(project_name="neontrees", workspace="bw4sz")
experiment.log_parameters(model.config["train"])
experiment.log_parameters(model.config["evaluation"])    
experiment.log_parameters(model.config["predict"])
experiment.add_tag("HSI")

##Train

#Train see config.yml for tfrecords path with weighted classes in cross entropy
model.read_data()
class_weight = model.calc_class_weight()

##Train subnetwork
experiment.log_parameter("Train subnetworks", True)
with experiment.context_manager("HSI_spatial_subnetwork"):
    print("Train HSI spatial subnetwork")
    model.read_data(mode="HSI_submodel")
    model.train(submodel="spatial", sensor="hyperspectral",class_weight=[class_weight, class_weight, class_weight], experiment=experiment)
示例#16
0
#Generate tfrecords
from DeepTreeAttention.trees import AttentionModel
from DeepTreeAttention.generators import boxes
from DeepTreeAttention.utils.start_cluster import start
from DeepTreeAttention.utils.paths import lookup_and_convert

from distributed import wait
import glob
import os

att = AttentionModel(config="/home/b.weinstein/DeepTreeAttention/conf/tree_config.yml")

#get root dir full path
client = start(cpus=10, mem_size="5GB") 

#Generate training data
train_tfrecords = []
shapefiles = glob.glob(os.path.join("/orange/idtrees-collab/DeepTreeAttention/WeakLabels/","*.shp"))
for shapefile in shapefiles:
    sensor_path = lookup_and_convert(shapefile, rgb_pool=att.config["train"]["rgb_sensor_pool"], hyperspectral_pool=att.config["train"]["hyperspectral_sensor_pool"], savedir=att.config["hyperspectral_tif_dir"])
    future = client.submit(att.generate, shapefile=shapefile, sensor_path=sensor_path, chunk_size=10000, train=True)
    train_tfrecords.append(future)
    
wait(train_tfrecords)
for x in train_tfrecords:
    x.result()
        
示例#17
0
if __name__ == "__main__":
    experiment = Experiment(project_name="neontrees", workspace="bw4sz")
    experiment.add_tag("Train")

    #Create output folder
    #Sleep for a moment to allow queries to build up in SLURM queue
    sleep(randint(0, 10))
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    save_dir = "{}/{}".format(
        "/orange/idtrees-collab/DeepTreeAttention/snapshots/", timestamp)
    os.mkdir(save_dir)

    experiment.log_parameter("timestamp", timestamp)

    #Create a class and run
    model = AttentionModel(
        config="/home/b.weinstein/DeepTreeAttention/conf/tree_config.yml")
    model.create()

    #Log config
    experiment.log_parameters(model.config["train"])
    experiment.log_parameters(model.config["evaluation"])
    experiment.log_parameters(model.config["predict"])
    experiment.log_parameters(model.config["train"]["ensemble"])

    ##Train
    #Train see config.yml for tfrecords path with weighted classes in cross entropy
    model.read_data()
    class_weight = model.calc_class_weight()

    #Load from file and compile or train new models
    if model.config["train"]["checkpoint_dir"] is not None: