示例#1
0
def LevelizedCostofElectricity(station_id, grid_location, cap_ex, lifetime, K,
                               Q, B, M, g, h_0, gravity,
                               emergency_maintentance, installation):
    '''
    This function will calculated the levelized cost of electricity given the parameters for maintenance, power generation, installation
    and lifetime
    station_id will determine the location due to the necessity to use harmonic constituents for the calculations
    grid_location is where the connections will be made
    cap_ex are the capital expenditures for the cost of the turbine and fixtures
    this function was written with a sensitivity analysis in mind
    '''

    MCT = Turbine(K, Q, B, M, g)

    tidal_station = TidalStation(station_id)

    emergency_events = [
        maintenance.EmergencyMaintenance(
            e['minimal_rate'], e['midlevel_rate'], e['severe_rate'],
            e['minimal_cost'], e['midlevel_cost'], e['severe_cost'],
            e['minimal_downtime'], e['midlevel_downtime'],
            e['severe_downtime'], e['number'], e['labor'], e['partname'])
        for e in emergency_maintentance
    ]

    #installation_cost = installation.calculateInstallation()

    ###
    # The following code is used to run the monte carlo simulation with feedback to the power generation functions
    # where the downtime requires the turbine to no longer generate an output
    ###
    time = []
    results = []
    end_loop = False
    time_tracker = 0.

    maintenance_costs = []
    maintenance_times = []

    #time to run the simulation
    while not end_loop:

        maintenance_event, uptime = monteCarlo(emergency_events)

        if time_tracker + uptime > lifetime:
            end_loop = True
            uptime = lifetime - time_tracker

        end_time = time_tracker + uptime
        results_array, time_array = calculate_power(tidal_station, MCT,
                                                    results[-1][-1],
                                                    time_tracker, end_time,
                                                    gravity, h_0)

        maintenance_costs.append(maintenance_event.event_cost)
        maintenance_times.append(time_tracker + uptime)
        time_tracker += uptime + maintenance_event.downtime
        results.append(results_array)
        time.append(time_array)

    powerGen = np.concatenate(results)
    times = np.concatenate(time)

    # Process the final costs and return the levelized cost
    total_cost = maintenance_costs[-1] + installation_cost
    total_power = powerGen[-1]
    return total_cost / total_power
示例#2
0
def LevelizedCostofElectricity(HM,
                               number_of_turbines,
                               lifetime,
                               K,
                               Q,
                               B,
                               M,
                               g,
                               emergency_maintentance,
                               installation,
                               operations,
                               filename=None,
                               power_array=None,
                               num=500):
    '''
    This function will calculated the levelized cost of electricity given the parameters for maintenance, power generation, installation
    and lifetime
    station_id will determine the location due to the necessity to use harmonic constituents for the calculations
    grid_location is where the connections will be made
    cap_ex are the capital expenditures for the cost of the turbine and fixtures
    this function was written with a sensitivity analysis in mind
    '''

    MCT = Turbine(K, Q, B, M, g)

    if power_array is None:
        power_array, time_array = calculate_power(
            HM,
            MCT,
            0,
            0,
            lifetime * 24 * 3600 * 365.25,
        )  # everything else is in years, need to convert to seconds for int
        time_array = time_array / (24. * 3600. * 365.25)
    else:
        time_array = np.linspace(0, lifetime, len(power_array))
    ###
    # The following code is used to run the monte carlo simulation with feedback to the power generation functions
    # where the downtime requires the turbine to no longer generate an output
    ###

    power_array *= .95  #to account for voltage drop across cable
    maintenance_costs = np.zeros(num)
    power_losses = np.zeros_like(maintenance_costs)
    #time to run the simulation

    for i in range(num):
        end_loop = False
        time_tracker = 0.
        power_loss = 0.
        maintenance_cost = 0.

        for turbine in range(number_of_turbines):
            while not end_loop:
                maintenance_event, uptime = maintenance.monteCarlo(
                    emergency_maintentance)
                end_time = time_tracker + uptime
                maintenance_cost += maintenance_event.event_cost
                time_tracker += uptime + maintenance_event.downtime.total_seconds(
                ) / (24 * 3600 * 365.25)
                if end_time >= lifetime or time_tracker >= lifetime:
                    break
                start_index = np.searchsorted(time_array, time_tracker)
                end_index = np.searchsorted(time_array, end_time)
                energy_2 = interpolate(time_tracker,
                                       time_array[start_index - 1],
                                       time_array[start_index],
                                       power_array[start_index - 1],
                                       power_array[start_index])
                energy_1 = interpolate(end_time, time_array[end_index - 1],
                                       time_array[end_index],
                                       power_array[end_index - 1],
                                       power_array[end_index])
                power_loss += energy_2 - energy_1

        power_losses[i] = power_loss
        maintenance_costs[i] = maintenance_cost

    installation_cost = calculate_Installation(installation)
    planned_maintenance = .05 * installation_cost
    ops_cost = calculate_ops(operations, lifetime)
    # Process the final costs and return the levelized cost
    total_cost = np.mean(
        maintenance_costs) + installation_cost + ops_cost + planned_maintenance
    total_power = (power_array[-1] * number_of_turbines -
                   np.mean(power_losses)) / 3600  #to kWhr!!
    with open(filename, 'w') as f:
        with redirect_stdout(f):
            print('Ideal power output = {} MWhr '.format(power_array[-1] /
                                                         (1000 * 3600)))
            print('Estimated total power loss - {:.2f} MJ, sigma = {:.2f}'.
                  format(
                      np.mean(power_losses) / 1000,
                      np.std(power_losses) / 1000))
            print(
                'Estimated total maintenance cost - $ {:.2f}, sigma = $ {:.2f}'
                .format(np.mean(maintenance_costs), np.std(maintenance_costs)))
            print('Estimated installation cost - $ {:.2f}'.format(
                installation_cost))
            print('Estimated operations cost - $ {:.2f}'.format(ops_cost))
            print('LCOE - {:.2f}'.format(total_cost / total_power))
    return total_cost / total_power, power_array
示例#3
0
    yaxis=dict(title='Velocity (m/s)',
               titlefont=dict(size=20, color='white'),
               tickfont=dict(size=16, color='white')),
    paper_bgcolor='transparent',
    plot_bgcolor='transparent')

fig = go.Figure(data=trace, layout=layout)
py.iplot(fig, filename='currentHarmonicConstituent')

# In[ ]:

# ### Testing for the power output generation

# In[ ]:

MCT = Turbine(1200., 0.1835, 3.55361367, 2.30706792, 1.05659521)
Sagamore = TidalStation(8447173)
results, times = calculate_power(Sagamore, MCT, 0, 0, 365 * 24 * 3600, 9.8, 3)

plt.plot(times / (24 * 3600), results / 1000)
plt.xlim(0, 365)
plt.ylabel('Energy (MJ)')
plt.xlabel('Time (day)')
plt.savefig('PowerOutput.png',
            format='png',
            transparent=True,
            bbox_inches='tight')

# ### Build power curve model

# In[ ]: