示例#1
0
    def test_cf_hamilton_linear_to_quadratic_matrix(self):

        """Compare the results of (1) asking directly for the linear
        matrix for a given Hamiltonian, and (2) forming Hamilton's
        equations and then linearizing them."""
        
        dof = 3
        terms = {Powers((2, 0, 0, 0, 0, 0)): -0.3,
                 Powers((1, 1, 0, 0, 0, 0)): 0.33,
                 Powers((0, 1, 0, 1, 1, 0)): 7.2,
                 Powers((0, 1, 0, 0, 1, 0)): 7.12,
                 Powers((0, 0, 3, 0, 1, 0)): -4.0 }
        h = Polynomial(2*dof, terms=terms)
        alg = LieAlgebra(dof)
        diag = Diagonalizer(alg)
        lin = diag.linear_matrix(h)
        rhs = diag.hamiltons_equations_rhs(h)
        rhs_lin = tuple([alg.isograde(h_term, 1) for h_term in rhs])
        for i, pol in enumerate(rhs_lin):
            for m, c in pol.powers_and_coefficients():
                mon = alg.monomial(m, c)
                self.assertEquals(alg.grade(mon), 1)
                for j, f in enumerate(m):
                    if f==1:
                        self.assertEquals(lin[i, j], c)
示例#2
0
    def test_cf_hamilton_linear_to_quadratic_matrix(self):
        """Compare the results of (1) asking directly for the linear
        matrix for a given Hamiltonian, and (2) forming Hamilton's
        equations and then linearizing them."""

        dof = 3
        terms = {
            Powers((2, 0, 0, 0, 0, 0)): -0.3,
            Powers((1, 1, 0, 0, 0, 0)): 0.33,
            Powers((0, 1, 0, 1, 1, 0)): 7.2,
            Powers((0, 1, 0, 0, 1, 0)): 7.12,
            Powers((0, 0, 3, 0, 1, 0)): -4.0
        }
        h = Polynomial(2 * dof, terms=terms)
        alg = LieAlgebra(dof)
        diag = Diagonalizer(alg)
        lin = diag.linear_matrix(h)
        rhs = diag.hamiltons_equations_rhs(h)
        rhs_lin = tuple([alg.isograde(h_term, 1) for h_term in rhs])
        for i, pol in enumerate(rhs_lin):
            for m, c in pol.powers_and_coefficients():
                mon = alg.monomial(m, c)
                self.assertEquals(alg.grade(mon), 1)
                for j, f in enumerate(m):
                    if f == 1:
                        self.assertEquals(lin[i, j], c)
示例#3
0
    def test_eigensystem(self):

        """Multiply eigenvectors and the original matrix by the
        eigenvalues in order to check the integrity of the
        eigensystem."""
        
        dof = 3
        terms = {Powers((2, 0, 0, 0, 0, 0)): -0.3,
                 Powers((1, 1, 0, 0, 0, 0)): 0.33,
                 Powers((0, 0, 1, 0, 1, 0)): 7.2,
                 Powers((0, 0, 0, 0, 0, 2)): 7.2,
                 Powers((0, 0, 0, 1, 1, 0)): 7.12 }
        g = Polynomial(2*dof, terms=terms)
        alg = LieAlgebra(dof)
        diag = Diagonalizer(alg)
        lin = diag.linear_matrix(g)
        val_vec_pairs = diag.eigenvalue_eigenvector_pairs(g)
        for p in val_vec_pairs:
            prod_s = p.vec*p.val
            prod_v = matrixmultiply(lin, p.vec)
            for x in prod_s-prod_v:
                self.assert_(abs(x)<1.0e-15)
示例#4
0
    def test_eigensystem(self):
        """Multiply eigenvectors and the original matrix by the
        eigenvalues in order to check the integrity of the
        eigensystem."""

        dof = 3
        terms = {
            Powers((2, 0, 0, 0, 0, 0)): -0.3,
            Powers((1, 1, 0, 0, 0, 0)): 0.33,
            Powers((0, 0, 1, 0, 1, 0)): 7.2,
            Powers((0, 0, 0, 0, 0, 2)): 7.2,
            Powers((0, 0, 0, 1, 1, 0)): 7.12
        }
        g = Polynomial(2 * dof, terms=terms)
        alg = LieAlgebra(dof)
        diag = Diagonalizer(alg)
        lin = diag.linear_matrix(g)
        val_vec_pairs = diag.eigenvalue_eigenvector_pairs(g)
        for p in val_vec_pairs:
            prod_s = p.vec * p.val
            prod_v = matrixmultiply(lin, p.vec)
            for x in prod_s - prod_v:
                self.assert_(abs(x) < 1.0e-15)