def predict(self, data): res = [] if len(self.predictors) == 0: logging.debug('The Model has not been fitted!') if len(data.shape) == 1: data = np.reshape(data, [1, -1]) for i in data: predict_res = self._use_predictors(i) if self.predicted_vector == []: self.predicted_vector = copy.deepcopy(predict_res) else: self.predicted_vector = np.row_stack( (self.predicted_vector, predict_res)) value = MT.closet_vector(predict_res, self.matrix, y_euclidean_distance, np.array(self.predictor_weights)) res.append(MT.get_key(self.index, value)) vector = [] for i in range(self.matrix.shape[1]): vector.append(list(self.predicted_vector[:, i])) self.predicted_vector = copy.deepcopy(vector) return np.array(res)
def predict(self, data): """ a method used to predict label for give data :param data: data to predict :return: predicted label """ res = [] if len(self.predictors) == 0: logging.debug('The Model has not been fitted!') if len(data.shape) == 1: data = np.reshape(data, [1, -1]) for i in data: # find k neighbors from train data knn_model = neighbors.KNeighborsClassifier(algorithm='ball_tree', n_neighbors=3).fit( self.train_data, self.train_label) knn_pre_label = knn_model.predict([i]) predicted_vector = self._use_predictors(i) # one row index = {l: i for i, l in enumerate(np.unique(self.train_label))} knn_pre_index = index[knn_pre_label[0]] # make it 0 when the knn predicted class is 0 for j in range(len(self.matrix[0])): if self.matrix[knn_pre_index][j] == 0: predicted_vector[j] = 0 self.predicted_vector.append(list(predicted_vector)) value = MT.closet_vector(predicted_vector, self.matrix, self.distance_measure) res.append(MT.get_key(self.index, value)) return np.array(res)
def create_matrix(self, data, label): while True: index = {l: i for i, l in enumerate(np.unique(label))} matrix_row = len(index) if matrix_row > 3: matrix_col = np.int(np.floor(10 * np.log10(matrix_row))) else: matrix_col = matrix_row matrix = np.random.random((matrix_row, matrix_col)) class_1_index = matrix > 0.5 class_2_index = matrix < 0.5 matrix[class_1_index] = 1 matrix[class_2_index] = -1 if (not MT.exist_same_col(matrix)) and (not MT.exist_same_row( matrix)) and MT.exist_two_class(matrix): return matrix, index
def create_matrix(self, data, label, **param): labels_to_divide = [np.unique(label)] index = {l: i for i, l in enumerate(np.unique(label))} TM = None DCECOC = DC_ECOC() if 'dc_option' in param: for each in param['dc_option']: m, index = DCECOC.create_matrix(data, label, dc_option=each) if M is None: M = [m] else: M = M.append(m) else: logging.debug('ERROR: undefine the type of DCECOC') return train_data, train_label, val_data, val_label = MT.split_traindata( data, label) # split data into train and validation # select the most effective matrix res = np.zeros(1, len(M)) for i in range(len(M)): m = M[i] res[i] = MT.res_matrix(m, index, train_data, train_label, val_data, val_label, self.estimator, self.distance_measure) best_M = M[res.index(max(res))] most_time = 10 res = 1 while (most_time and res < 0.8): sel_m = random.random(len(M)) new_M, new_index = MT.change_subtree(best_M, M[sel_m]) new_res = MT.res_matrix(new_M, new_index, train_data, train_label, val_data, val_label, self.estimator, self.distance_measure) if new_res > res: best_M = new_M res = new_res most_time = most_time + 1 return M, index
def create_matrix(self, data, label): index = {l: i for i, l in enumerate(np.unique(label))} matrix = None labels_to_agg = np.unique(label) labels_to_agg_list = [[x] for x in labels_to_agg] label_dict = { labels_to_agg[value]: value for value in range(labels_to_agg.shape[0]) } num_of_length = len(labels_to_agg_list) class_1_variety = [] class_2_variety = [] while len(labels_to_agg_list) > 1: score_result = np.inf for i in range(0, len(labels_to_agg_list) - 1): for j in range(i + 1, len(labels_to_agg_list)): class_1_data, class_1_label = MT.get_data_subset( data, label, labels_to_agg_list[i]) class_2_data, class_2_label = MT.get_data_subset( data, label, labels_to_agg_list[j]) score = Criterion.agg_score( class_1_data, class_1_label, class_2_data, class_2_label, score=Criterion.max_distance_score) if score < score_result: score_result = score class_1_variety = labels_to_agg_list[i] class_2_variety = labels_to_agg_list[j] new_col = np.zeros((num_of_length, 1)) for i in class_1_variety: new_col[label_dict[i]] = 1 for i in class_2_variety: new_col[label_dict[i]] = -1 if matrix is None: matrix = new_col else: matrix = np.hstack((matrix, new_col)) new_class = class_1_variety + class_2_variety labels_to_agg_list.remove(class_1_variety) labels_to_agg_list.remove(class_2_variety) labels_to_agg_list.insert(0, new_class) return matrix, index
def get_DC_value(data, labels, group1, group2, dc_option): """ :param data: the whole data :param labels: the whole labels :param group1: group1 classes :param group2: group2 classes :param dc_option: select which dc is used :return: DC value """ group1_data, group1_label = MT.get_data_subset(data, labels, group1) group2_data, group2_label = MT.get_data_subset(data, labels, group2) try: funname = 'get_complexity_' + dc_option fun = getattr(GC, funname) DC = fun(list(group1_data), list(group1_label), list(group2_data), list(group2_label)) except: logging.error('DC option is wrong') raise NameError('DC option is wrong') return DC
def fit(self, data, label, **estimator_param): """ a method to train base estimator based on given data and label :param data: data used to train base estimator :param label: label corresponding to the data :param estimator_param: some param used by base estimator :return: None """ self.train_data = data self.train_label = label self.predictors = [] self.matrix, self.index = self.create_matrix(data, label) for i in range(self.matrix.shape[1]): dat, cla = MT.get_data_from_col(data, label, self.matrix[:, i], self.index) estimator = self.estimator(**estimator_param).fit(dat, cla) self.predictors.append(estimator)
def create_matrix(self, data, label, dc_option): labels_to_divide = [np.unique(label)] index = {l: i for i, l in enumerate(np.unique(label))} # if dc_option == 'F1': # matrix = [[-1,0,1,0],[-1,0,-1,1],[1,-1,0,0],[-1,0,-1,-1],[1,1,0,0]] # return matrix,index # elif dc_option == 'F2': # matrix = [[-1,0,-1,-1],[-1,0,-1,1],[-1,0,1,0],[1,1,0,0],[1,-1,0,0]] # return matrix,index # elif dc_option == 'F3': # matrix = [[1,1,0,0],[-1,0,-1,1],[-1,0,1,0],[-1,0,-1,-1],[1,-1,0,0]] # return matrix,index matrix = None while len(labels_to_divide) > 0: label_set = labels_to_divide.pop(0) # get correspoding label and data from whole data and label datas, labels = MT.get_data_subset(data, label, label_set) # DC search class_1, class_2 = Greedy_Search.greedy_search(datas, labels, dc_option=dc_option) new_col = np.zeros((len(index), 1)) for i in class_1: new_col[index[i]] = 1 for i in class_2: new_col[index[i]] = -1 if matrix is None: matrix = copy.copy(new_col) else: matrix = np.hstack((matrix, new_col)) if len(class_1) > 1: labels_to_divide.append(class_1) if len(class_2) > 1: labels_to_divide.append(class_2) return matrix, index
def create_matrix(self, data, label): index = {l: i for i, l in enumerate(np.unique(label))} matrix = None labels_to_divide = [np.unique(label)] while len(labels_to_divide) > 0: label_set = labels_to_divide.pop(0) datas, labels = MT.get_data_subset(data, label, label_set) class_1_variety_result, class_2_variety_result = sffs( datas, labels) new_col = np.zeros((len(index), 1)) for i in class_1_variety_result: new_col[index[i]] = 1 for i in class_2_variety_result: new_col[index[i]] = -1 if matrix is None: matrix = copy.copy(new_col) else: matrix = np.hstack((matrix, new_col)) if len(class_1_variety_result) > 1: labels_to_divide.append(class_1_variety_result) if len(class_2_variety_result) > 1: labels_to_divide.append(class_2_variety_result) return matrix, index
def create_matrix(self, data, label, **param): labels_to_divide = [np.unique(label)] index = {l: i for i, l in enumerate(np.unique(label))} M = None if 'base_M' not in param: DCECOC = DC_ECOC() if 'dc_option' in param: for each in param['dc_option']: m, index = DCECOC.create_matrix(data, label, dc_option=each) if M is None: M = copy.deepcopy(m) else: M = np.hstack((M, m)) else: logging.warning('use default DC: F1') M = DCECOC.create_matrix(data, label) else: for each in param['base_M']: if M is None: M = copy.deepcopy(each) else: M = np.hstack((M, each)) if M is None: logging.debug('ERROR:Matrix is None') raise ValueError('ERROR:Matrix is None') # M = MT.remove_reverse(M) # M = MT.remove_duplicate_column(M) #simplify the process M = MT.select_column(M, data, label, len(index)) if 'ternary_option' not in param: param['ternary_option'] = '+' logging.info("merged matrix:\r\n" + str(M)) GPM = None while (len(M[0]) != 0): if len(M[0]) == 1: if GPM is None: GPM = copy.copy(np.hstack((M))) else: GPM = np.hstack((GPM, M)) M = np.delete(M, 0, axis=1) break elif len(M[0]) == 2 or len(M[0]) == 3: left_node, right_node, M = MT.get_2column(M) parent_node = MT.left_right_create_parent( left_node, right_node, param['ternary_option'], data, label) M = np.hstack((M, parent_node)) GPM = MT.insert_2column(GPM, left_node, right_node) elif len(M[0]) >= 4: left_left_node, left_right_node, M = MT.get_2column(M) left_parent_node = MT.left_right_create_parent( left_left_node, left_right_node, param['ternary_option'], data, label) GPM = MT.insert_2column(GPM, left_left_node, left_right_node) right_left_node, right_right_node, M = MT.get_2column(M) right_parent_node = MT.left_right_create_parent( right_left_node, right_right_node, param['ternary_option'], data, label) GPM = MT.insert_2column(GPM, right_left_node, right_right_node) M = np.hstack((M, left_parent_node, right_parent_node)) # M = MT.change_unfit_DC(M,data,label,dc_option='D2') logging.info('1.create matrix ' + str(len(GPM[0])) + '\n' + str(GPM)) GPM = MT.remove_reverse(GPM) # delete reverse column and row logging.info('2.remove reverse matrix ' + str(len(GPM[0])) + '\n' + str(GPM)) GPM = MT.remove_duplicate_column(GPM) # delete identical column logging.info('3.remove duplicate matrix ' + str(len(GPM[0])) + '\n' + str(GPM)) # GPM,new_index = MT.remove_duplicate_row(GPM,index) # delete identical row ------may need!! GPM = MT.remove_unfit( GPM) # delete column that does not contain +1 and -1 logging.info('4.remove unfit matrix ' + str(len(GPM[0])) + '\n' + str(GPM)) return GPM, index
def fit(self, data, label): self.train_data, self.validate_data, self.train_label, self.validation_y = train_test_split( data, label, test_size=0.25) self.matrix, self.index, self.predictors, self.predictor_weights = \ self.create_matrix(self.train_data, self.train_label, self.validate_data, self.validation_y, self.estimator, **self.param) feature_subset = MT.get_subset_feature_from_matrix( self.matrix, self.index) for i in range(self.iter_num): y_pred = self.predict(self.validate_data) y_true = self.validation_y confusion_matrix = MT.create_confusion_matrix( y_true, y_pred, self.index) while True: max_index = np.argmax(confusion_matrix) max_index_y = np.floor(max_index / confusion_matrix.shape[1]) max_index_x = max_index % confusion_matrix.shape[1] label_y = MT.get_key(self.index, max_index_y) label_x = MT.get_key(self.index, max_index_x) score_result = 0 col_result = None est_result = None est_weight_result = None feature_subset_m = None feature_subset_n = None for m in range(len(feature_subset) - 1): for n in range(m + 1, len(feature_subset)): if ((label_y in feature_subset[m] and label_x in feature_subset[n]) or (label_y in feature_subset[n] and label_x in feature_subset[m])) \ and (set(feature_subset[m]).intersection(set(feature_subset[n])) == set()): col = MT.create_col_from_partition( feature_subset[m], feature_subset[n], self.index) if not MT.have_same_col(col, self.matrix): train_data, train_cla = MT.get_data_from_col( self.train_data, self.train_label, col, self.index) est = self.estimator(**self.param).fit( train_data, train_cla) validation_data, validation_cla = MT.get_data_from_col( self.validate_data, self.validation_y, col, self.index) if validation_data is None: score = 0.8 else: score = est.score(validation_data, validation_cla) if score >= score_result: score_result = score col_result = col est_result = est est_weight_result = MT.estimate_weight( 1 - score_result) feature_subset_m = m feature_subset_n = n if col_result is None: confusion_matrix[np.int(max_index_y), np.int(max_index_x)] = 0 if np.sum(confusion_matrix) == 0: break else: break try: self.matrix = np.hstack((self.matrix, col_result)) self.predictors.append(est_result) self.predictor_weights.append(est_weight_result) feature_subset.append(feature_subset[feature_subset_m] + feature_subset[feature_subset_n]) except (TypeError, ValueError): pass
def create_matrix(self, train_data, train_label, validate_data, validate_label, estimator, **param): index = {l: i for i, l in enumerate(np.unique(train_label))} matrix = None predictors = [] predictor_weights = [] labels_to_divide = [np.unique(train_label)] while len(labels_to_divide) > 0: label_set = labels_to_divide.pop(0) label_count = len(label_set) groups = combinations(range(label_count), np.int(np.ceil(label_count / 2))) score_result = 0 est_result = None for group in groups: class_1_variety = np.array([label_set[i] for i in group]) class_2_variety = np.array( [l for l in label_set if l not in class_1_variety]) class_1_data, class_1_label = MT.get_data_subset( train_data, train_label, class_1_variety) class_2_data, class_2_label = MT.get_data_subset( train_data, train_label, class_2_variety) class_1_cla = np.ones(len(class_1_data)) class_2_cla = -np.ones(len(class_2_data)) train_d = np.vstack((class_1_data, class_2_data)) train_c = np.hstack((class_1_cla, class_2_cla)) est = estimator(**param).fit(train_d, train_c) class_1_data, class_1_label = MT.get_data_subset( validate_data, validate_label, class_1_variety) class_2_data, class_2_label = MT.get_data_subset( validate_data, validate_label, class_2_variety) class_1_cla = np.ones(len(class_1_data)) class_2_cla = -np.ones(len(class_2_data)) validation_d = np.array([]) validation_c = np.array([]) try: validation_d = np.vstack((class_1_data, class_2_data)) validation_c = np.hstack((class_1_cla, class_2_cla)) except Exception: if len(class_1_data) > 0: validation_d = class_1_data validation_c = class_1_cla elif len(class_2_data) > 0: validation_d = class_2_data validation_c = class_2_cla if validation_d.shape[0] > 0 and validation_d.shape[1] > 0: score = est.score(validation_d, validation_c) else: score = 0.8 if score >= score_result: score_result = score est_result = est class_1_variety_result = class_1_variety class_2_variety_result = class_2_variety new_col = np.zeros((len(index), 1)) for i in class_1_variety_result: new_col[index[i]] = 1 for i in class_2_variety_result: new_col[index[i]] = -1 if matrix is None: matrix = copy.copy(new_col) else: matrix = np.hstack((matrix, new_col)) predictors.append(est_result) predictor_weights.append(MT.estimate_weight(1 - score_result)) if len(class_1_variety_result) > 1: labels_to_divide.append(class_1_variety_result) if len(class_2_variety_result) > 1: labels_to_divide.append(class_2_variety_result) return matrix, index, predictors, predictor_weights
def create_matrix(self, data, label): index = {l: i for i, l in enumerate(np.unique(label))} matrix = None labels_to_divide = [np.unique(label)] while len(labels_to_divide) > 0: label_set = labels_to_divide.pop(0) datas, labels = MT.get_data_subset(data, label, label_set) class_1_variety_result, class_2_variety_result = sffs( datas, labels, score=Criterion.max_center_distance_score) class_1_data_result, class_1_label_result = MT.get_data_subset( data, label, class_1_variety_result) class_2_data_result, class_2_label_result = MT.get_data_subset( data, label, class_2_variety_result) class_1_center_result = np.average(class_1_data_result, axis=0) class_2_center_result = np.average(class_2_data_result, axis=0) belong_to_class_1 = [ euclidean_distance(x, class_1_center_result) <= euclidean_distance(x, class_2_center_result) for x in class_1_data_result ] belong_to_class_2 = [ MT.euclidean_distance(x, class_2_center_result) <= MT.euclidean_distance(x, class_1_center_result) for x in class_2_data_result ] class_1_true_num = {k: 0 for k in class_1_variety_result} class_2_true_num = {k: 0 for k in class_2_variety_result} for y in class_1_label_result[belong_to_class_1]: class_1_true_num[y] += 1 for y in class_2_label_result[belong_to_class_2]: class_2_true_num[y] += 1 class_1_label_count = { k: list(class_1_label_result).count(k) for k in class_1_variety_result } class_2_label_count = { k: list(class_2_label_result).count(k) for k in class_2_variety_result } class_1_ratio = { k: class_1_true_num[k] / class_1_label_count[k] for k in class_1_variety_result } class_2_ratio = { k: -class_2_true_num[k] / class_2_label_count[k] for k in class_2_variety_result } new_col = np.zeros((len(index), 1)) for i in class_1_ratio: new_col[index[i]] = class_1_ratio[i] for i in class_2_ratio: new_col[index[i]] = class_2_ratio[i] if matrix is None: matrix = copy.copy(new_col) else: matrix = np.hstack((matrix, new_col)) if len(class_1_variety_result) > 1: labels_to_divide.append(class_1_variety_result) if len(class_2_variety_result) > 1: labels_to_divide.append(class_2_variety_result) return matrix, index