def main(model_name): print('model name', model_name) if model_name == 'bimpm': model = bimpm() if model_name == 'drmmt': model = drmm_tks() if model_name == 'cnn': model = model_conv1D_() if model_name == 'slstm': model = Siamese_LSTM() if model_name == 'esim': model = esim() if model_name == 'dam': model = decomposable_attention() if model_name == 'abcnn': model = ABCNN( left_seq_len=config.word_maxlen, right_seq_len=config.word_maxlen, depth=3, nb_filter=100, filter_widths=[5, 4, 3], collect_sentence_representations=True, abcnn_1=True, abcnn_2=True, # mode="euclidean", mode="cos", # mode='dot' ) do_train_cv(model_name, model, epoch_nums=1, kfolds=5)
def get_model(model_name): lr = 0.001 if model_name == 'bimpm': #3,no model = bimpm() if model_name == 'drmmt': #3, yes, but all 1 model = drmm_tks(num_layer=3, hidden_sizes=[100, 80, 1], topk=20) if model_name == 'msrnn': model = MATCHSRNN() if model_name == 'dssm': model = dssm() #5 if model_name == 'arc2': model = arc2() if model_name == 'test': model = test() if model_name == 'cnn': lr = 0.01 model = model_conv1D_() if model_name == 'rnn': model = rnn_v1() if model_name == 'rnn0': #3,yes model = my_rnn() if model_name == 'slstm': model = Siamese_LSTM() #5,no if model_name == 'scnn': model = Siamese_CNN() #not exit if model_name == 'esim': #5,no lr = 0.01 model = esim() if model_name == 'dam': #3, yes model = decomposable_attention() if model_name == 'abcnn': model = ABCNN( left_seq_len=config.word_maxlen, right_seq_len=config.word_maxlen, depth=2, nb_filter=100, filter_widths=[5, 3], collect_sentence_representations=False, abcnn_1=True, abcnn_2=True, # mode="euclidean", # mode="cos", mode='dot') return model, lr
def main(model_name): print('model name', model_name) x_train, y_train, x_dev, y_dev = load_data() if model_name == 'bimpm': model = bimpm() if model_name == 'cnn': model = model_conv1D_() if model_name == 'slstm': model = Siamese_LSTM() if model_name == 'esim': model = esim() if model_name == 'dam': model = decomposable_attention() if model_name == 'abcnn': model = ABCNN( left_seq_len=config.word_maxlen, right_seq_len=config.word_maxlen, depth=3, nb_filter=100, filter_widths=[5, 4, 3], collect_sentence_representations=True, abcnn_1=True, abcnn_2=True, #mode="euclidean", mode="cos", #mode='dot' ) train(x_train, y_train, x_dev, y_dev, model_name, model)