def propagate(self, segments):
        # Instantiate the integrator here since cython extension classes do not
        # automatically implement the pickling protocol
        self.model['seed'] = genrandint()
        integrator = ElasticNetwork(**self.model)

        for segment in segments:
            starttime = time.time()

            new_pcoords = np.empty((self.nsteps, self.ndim),
                                   dtype=pcoord_dtype)
            new_pcoords[0, :] = segment.pcoord[0, :]

            cpos = self.ndim // 2
            x = new_pcoords[0, :cpos].copy().reshape(
                (-1, 3)).astype(np.float64)
            v = new_pcoords[0, cpos:].copy().reshape(
                (-1, 3)).astype(np.float64)

            for istep in xrange(1, self.nsteps):
                integrator.step(x, v, self.nsubsteps)
                new_pcoords[istep, :] = np.hstack((x.ravel(), v.ravel()))

            segment.pcoord = new_pcoords[...].astype(pcoord_dtype)
            segment.status = Segment.SEG_STATUS_COMPLETE

            segment.walltime = time.time() - starttime

        del integrator

        return segments
示例#2
0
文件: system.py 项目: nrego/westpa
    def propagate(self, segments):
        # Instantiate the integrator here since cython extension classes do not
        # automatically implement the pickling protocol
        self.model['seed'] = genrandint()
        integrator = ElasticNetwork(**self.model)

        for segment in segments:
            starttime = time.time()

            new_pcoords = np.empty((self.nsteps,self.ndim), dtype=pcoord_dtype)
            new_pcoords[0,:] = segment.pcoord[0,:]

            cpos = self.ndim // 2
            x = new_pcoords[0,:cpos].copy().reshape((-1,3)).astype(np.float64)
            v = new_pcoords[0,cpos:].copy().reshape((-1,3)).astype(np.float64)

            for istep in xrange(1, self.nsteps):
                integrator.step(x, v, self.nsubsteps)
                new_pcoords[istep,:] = np.hstack((x.ravel(), v.ravel()))

            segment.pcoord = new_pcoords[...].astype(pcoord_dtype)
            segment.status = Segment.SEG_STATUS_COMPLETE

            segment.walltime = time.time() - starttime

        del integrator

        return segments
def run(config):

    # Set up logging
    logname = config.get('outputs','log')
    print('Setting up logging: {}'.format(logname))
    logging.basicConfig(filename=logname,level=logging.DEBUG,filemode='w')

    NUM_BLOCKS = config.getint('parameters','num_blocks')
    STEPS_PER_BLOCK = config.getint('parameters','steps_per_block')
    
    model = {}
    model['mass'] = config.getfloat('model','mass')
    model['gamma'] = config.getfloat('model','gamma')
    model['temp'] = config.getfloat('model','temp') 
    model['dt'] = config.getfloat('model','dt')
    model['sigma'] = config.getfloat('model','sigma')
    model['eps'] = config.getfloat('model','eps')
    model['betamix'] = config.getfloat('model','betamix')

    model.update(np.load(config.get('model','ff_data')))
    model['seed'] = genrandint()    
    
    init_pos = {}
    init_pos['coordsA'] = model['coordsA']
    init_pos['coordsB'] = model['coordsB']
    del model['coordsA']
    del model['coordsB']

    system = ElasticNetwork(**model)

    # Setup storage 
    print('Setting up netcdf4 trajectory storage')
    nc = trajstore(natoms=system.natoms)
    nc.initialize_netcdf(config.get('outputs','trajname'))

    # Initial coords and velocities
    pos = init_pos[config.get('model','init_pos')]
    
    # Assign velocities drawn from Maxwell-Boltzmann distribution
    sigma = np.sqrt(model['temp']*0.001987191/model['mass'])
    vel = sigma*np.random.normal(size=pos.shape)
    
    print('Starting Simulation')
    for dk in xrange(NUM_BLOCKS):
        t1 = time.time()
        system.step(pos,vel,STEPS_PER_BLOCK)    
        nc.write_frame(pos,vel)
        EKin = 0.5*model['mass']*np.sum(vel**2)
        T = EKin*(2./3)/(0.001987191*system.natoms)
        logging.info('Completed {} of {} steps: {} s Ekin: {} Temp: {}'.format(dk,NUM_BLOCKS-1,time.time() - t1,EKin,T))

    nc.ncfile.close()