def viz_vector(): # https: // matplotlib.org / users / pyplot_tutorial.html dgm = d.Diagram([(2, 3), (3, 4)]) from Esme.dgms.format import dgmxy dgmx, dgmy = dgmxy(dgm) dgms = [dgm] * 2 params = { 'bandwidth': 1.0, 'weight': (1, 1), 'im_range': [0, 1, 0, 1], 'resolution': [5, 5] } image = dgms2vec(dgms, vectype='pi', **params) images = merge_dgms(dgms, dgms, vectype='pi', **params) print(np.shape(image), np.shape(images)) plt.figure() plt.subplot(121) plt.scatter(dgmx, dgmy) plt.subplot(122) plt.plot(images.T) # (n_image, dim) plt.show()
def main(graph, fil, norm, permute, ss, epd, n_cv, flip, feat, feat_kwargs, ntda): """ All hyperprameter goes here. :param graph: graph dataset :param fil: filtration function :param norm: normalize or not :param permute: whether permute dgm :param ss: both sublevel and superlevel or not :param epd: include extended persistence or not :param n_cv: number of cross validation :return: """ global gs print('feat kwargs', feat_kwargs) db = get_tda_db() params = { 'graph': graph, 'fil': fil, 'norm': norm, 'permute': permute, 'ss': ss, 'epd': epd, 'n_cv': n_cv, 'flip': flip, 'feat': feat, 'ntda': ntda, 'feat_kwargs': feat_kwargs } if check_duplicate(db, params): return label_flag = dgms_dir_test(fil=fil, fil_d='sub', norm=norm, graph=graph)[1] # gs, labels = load_graphs(dataset=graph, labels_only=label_flag) # step 1 gs, labels = load_tugraphs( graph, labels_only=False ) # labels_only true means gs is None. Turned on for high speed # parallel # subdgms = gs2dgms(gs, n_jobs=-1, fil=fil, fil_d='sub', norm=norm, graph = graph, ntda = ntda, debug_flag=True) subdgms = gs2dgms_parallel(n_jobs=-1, fil=fil, fil_d='sub', norm=norm, graph=graph, ntda=ntda) supdgms = gs2dgms_parallel(n_jobs=-1, fil=fil, fil_d='sup', norm=norm, graph=graph, ntda=ntda) epddgms = gs2dgms_parallel(n_jobs=-1, fil=fil, one_hom=True, norm=norm, graph=graph, ntda=ntda) dgms = combine_dgms(subdgms, supdgms, epddgms, ss=ss, epd=epd, flip=flip) dgms = permute_dgms(dgms, permute_flag=permute) # old way dgms_summary(dgms) swdgms = dgms2swdgms(dgms) if feat == 'sw': print(feat_kwargs) k, _ = sw_parallel(swdgms, swdgms, parallel_flag=True, kernel_type='sw', **feat_kwargs) print(k.shape) cmargs = {'print_flag': 'off'} # confusion matrix clf = classifier(labels, labels, method='svm', n_cv=n_cv, kernel=k, **cmargs) clf.svm_kernel_(n_splits=10) elif feat == 'pi': # vector params = { 'bandwidth': 1.0, 'weight': (1, 1), 'im_range': [0, 1, 0, 1], 'resolution': [5, 5] } images = merge_dgms(subdgms, supdgms, epddgms, vectype='pi', ss=ss, epd=epd, **params) clf = classifier(images, labels, method='svm', n_cv=n_cv) clf.svm(n_splits=10) elif feat == 'pss': k, _ = sw_parallel(swdgms, swdgms, parallel_flag=True, kernel_type='pss', **feat_kwargs) # print(k.shape, k, np.max(k)) clf = classifier(labels, labels, method='svm', n_cv=n_cv, kernel=k) clf.svm_kernel_(n_splits=10) elif feat == 'wg': k, _ = sw_parallel(swdgms, swdgms, parallel_flag=True, kernel_type='wg', **feat_kwargs) print(k.shape) clf = classifier(labels, labels, method='svm', n_cv=n_cv, kernel=k) clf.svm_kernel_(n_splits=10) elif feat == 'pervec': cmargs = {'print_flag': 'on'} # confusion matrix pd_vector = dgms2vec(dgms, vectype='pervec', **feat_kwargs) clf = classifier(pd_vector, labels, method='svm', n_cv=n_cv, **cmargs) clf.svm(n_splits=10) elif feat == 'pf': k, _ = sw_parallel(swdgms, swdgms, parallel_flag=False, kernel_type='pf', **feat_kwargs) clf = classifier(labels, labels, method='svm', n_cv=n_cv, kernel=k) clf.svm_kernel_(n_splits=10) else: raise Exception('No such feat %s' % feat) print(clf.stat) print_line() return clf.stat
def main(idx, n_iter, clf, test_size, vec, method, seg, permute, norm): cat_dict = prince_cat() for k, v in cat_dict.items(): if idx >= k[0] and idx <= k[1]: print(f'idx {idx} is {v}') break # seg one shape dgms = loaddgm(str(idx), form='dionysus') dgms = flip_dgms(dgms) if permute: dgms = permute_dgms(dgms, permute_flag=True, seed_flag=True) # vectorize if vec == 'pvector': dgm_vector = dgms2vec( dgms, vectype='pvector' ) # print(np.shape(pd_vector), np.shape(pd_vectors)) elif vec == 'pl': kwargs = {'num_landscapes': 5, 'resolution': 100} dgm_vector = dgms2vec(dgms, vectype='pl', **kwargs) elif vec == 'pervec': kwargs = {'dim': 300} dgm_vector = dgms2vec( dgms, vectype='pervec', **kwargs) # print(np.shape(pd_vector), np.shape(pd_vectors)) dgm_vector = normalize_(dgm_vector) else: raise Exception(f'No vec like {vec}') y = loady(model=idx, counter=True, seg=seg) X, Y = [], [] n_face, n_node = face_num(str(idx)), node_num(str(idx)) face_x = np.zeros((n_face, dgm_vector.shape[1])) face_indices = face_idx(str(idx)) for i in range(n_face): idx1, idx2, idx3 = face_indices[i] idx1, idx2, idx3 = int(idx1), int(idx2), int(idx3) face_x[i, :] = dgm_vector[idx1][:] + dgm_vector[idx2, :] + dgm_vector[ idx3, :] print(face_x.shape, y.shape) X.append(face_x) Y.append(y) X, Y = np.concatenate(X), np.concatenate(Y) if norm: X = normalize(X, axis=0) print(f'X is of shape {dgm_vector.shape} and Y is of shape {y.shape}\n') # classifer if clf == 'rf': clf = classifier(X, Y, method='svm', n_cv=1) res = clf.svm(n_splits=10) # todo res format else: kwargs = {} res = eigenpro(X, Y, max_iter=n_iter, test_size=test_size, bd=1, **kwargs) print('-' * 150) return res
cmargs = {'print_flag': 'off'} # confusion matrix clf = classifier(labels, labels, method='svm', n_cv=1, kernel=k, **cmargs) clf.svm_kernel_(n_splits=10) sys.exit() # convert to vector # kwargs = {'num_landscapes': 5, 'resolution': 100, 'keep_zero': True} # x = dgms2vec(dgms, vectype='pl', **kwargs) kwargs = {'dim': 100} print('using pervec') x = dgms2vec(dgms, vectype='pervec', **kwargs) if args.random: x = np.random.random(x.shape) if args.norm: x = normalize_(x, axis=0) _, y = modelnet2graphs(version=graph[-2:], print_flag=True, labels_only=True) print(f'total num is {len(y)}') y = np.array(y) print(Counter(list(y))) # eigenpro y = np.array(labels) eigenpro(x, y, max_iter=args.n_iter, test_size=args.test_size)
if args.idx >= k[0] and args.idx <= k[1]: print(f'idx {args.idx} is {v}') cat = v break # # seg one shape idx = args.idx dgms = loaddgm(str(idx), form='dionysus') dgms = flip_dgms(dgms) if args.permute: dgms = permute_dgms(dgms, permute_flag=True, seed_flag=True) # vectorize if args.vec == 'pvector': dgm_vector = dgms2vec( dgms, vectype='pvector' ) # print(np.shape(pd_vector), np.shape(pd_vectors)) elif args.vec == 'pl': kwargs = {'num_landscapes': 5, 'resolution': 100} dgm_vector = dgms2vec(dgms, vectype='pl', **kwargs) elif args.vec == 'pi_': params = { 'bandwidth': 1.0, 'weight': lambda x: x[1], 'im_range': [0, 1, 0, 1], 'resolution': [20, 20] } dgm_vector = dgms2vec(dgms, vectype='pi_', **params) print(dgm_vector.shape)