示例#1
0
def Faststainsep(I_obj,I,nstains,lamb,level,background_correction):
	s=I.shape
	ndimsI = len(s)
	if ndimsI!=3:
		print ("Input Image I should be 3-dimensional!")
		sys.exit(0)
	rows = s[0]
	cols = s[1]

	num_patches=20
	patchsize=100

	#Estimate stain color bases + acceleration
	Wi,i0=Wfast(I_obj,nstains,lamb,num_patches,patchsize,level)


	if background_correction:
		print ("Background intensity:",i0)
	else:
		i0 = np.array([255.,255.,255.])
		print ("Background correction disabled, default background intensity assumed")

	#Beer-Lambert tranformation
	V,VforW=BLtrans(I,i0)    #V=WH see in paper      
	Hiv=np.transpose(np.dot(np.linalg.pinv(Wi),np.transpose(V)))  #Pseudo-inverse
	Hiv[Hiv<0]=0

	Hi=np.reshape(Hiv,(rows,cols,nstains))
	#calculate the color image for each stain
	sepstains = []
	for i in range(nstains):
		vdAS =  np.reshape(Hiv[:,i],(rows*cols,1))*np.reshape(Wi[:,i],(1,3))
		sepstains.append(np.uint8(i0*np.reshape(np.exp(-vdAS), (rows, cols, 3))))
	return Wi,Hi,Hiv,sepstains
示例#2
0
def run_batch_colornorm(filenames,
                        nstains,
                        lamb,
                        output_direc,
                        img_level,
                        background_correction=True,
                        config=None):

    if config is None:
        config = tf.ConfigProto(log_device_placement=False)

    g_1 = tf.Graph()
    with g_1.as_default():
        Wis1 = tf.placeholder(tf.float32)
        Img1 = tf.placeholder(tf.float32, shape=(None, None, 3))
        src_i_0 = tf.placeholder(tf.float32)

        s = tf.shape(Img1)
        Img_vecd = tf.reshape(tf.minimum(Img1, src_i_0), [s[0] * s[1], s[2]])
        V = tf.log(src_i_0 + 1.0) - tf.log(Img_vecd + 1.0)
        Wi_inv = tf.transpose(tf.py_func(np.linalg.pinv, [Wis1], tf.float32))
        Hiv1 = tf.nn.relu(tf.matmul(V, Wi_inv))

        Wit1 = tf.placeholder(tf.float32)
        Hiv2 = tf.placeholder(tf.float32)
        sav_name = tf.placeholder(tf.string)
        tar_i_0 = tf.placeholder(tf.float32)
        normfac = tf.placeholder(tf.float32)
        shape = tf.placeholder(tf.int32)

        Hsonorm = Hiv2 * normfac
        source_norm = tf.cast(
            tar_i_0 * tf.exp(
                (-1) * tf.reshape(tf.matmul(Hsonorm, Wit1), shape)), tf.uint8)
        enc = tf.image.encode_png(source_norm)
        fwrite = tf.write_file(sav_name, enc)

    session1 = tf.Session(graph=g_1, config=config)

    file_no = 0
    print "To be normalized:", filenames[1:], "using", filenames[0]
    for filename in filenames:

        display_separator()

        if background_correction:
            correc = "back-correc"
        else:
            correc = "no-back-correc"

        base_t = os.path.basename(filenames[0])  #target.svs
        fname_t = os.path.splitext(base_t)[0]  #target
        base_s = os.path.basename(filename)  #source.svs
        fname_s = os.path.splitext(base_s)[0]  #source
        f_form = os.path.splitext(base_s)[1]  #.svs
        s = output_direc + base_s.replace(
            ".", "_") + " (using " + base_t.replace(
                ".", "_") + " " + correc + ").png"
        # s=output_direc+base_s.replace(".", "_")+" (no-norm using "+base_t.replace(".", "_")+").png"
        #s=output_direc+fname_s+"_normalized.png"

        tic = time.time()
        print

        I = openslide.open_slide(filename)
        if img_level >= I.level_count:
            print "Level", img_level, "unavailable for image, proceeding with level 0"
            level = 0
        else:
            level = img_level
        xdim, ydim = I.level_dimensions[level]
        ds = I.level_downsamples[level]

        if file_no == 0:
            print "Target Stain Separation in progress:", filename, str(
                xdim) + str("x") + str(ydim)
        else:
            print "Source Stain Separation in progress:", filename, str(
                xdim) + str("x") + str(ydim)
        print "\t \t \t \t \t \t \t \t \t \t Time: 0"

        #parameters for W estimation
        num_patches = 20
        patchsize = 1000  #length of side of square

        i0_default = np.array([255., 255., 255.], dtype=np.float32)

        Wi, i0 = Wfast(I, nstains, lamb, num_patches, patchsize, level,
                       background_correction)
        if i0 is None:
            print "No white background detected"
            i0 = i0_default

        if not background_correction:
            print "Background correction disabled, default background intensity assumed"
            i0 = i0_default

        if Wi is None:
            print "Color Basis Matrix Estimation failed...image normalization skipped"
            continue
        print "W estimated",
        print "\t \t \t \t \t \t Time since processing started:", round(
            time.time() - tic, 3)
        Wi = Wi.astype(np.float32)

        if file_no == 0:
            print "Target Color Basis Matrix:"
            print Wi
            Wi_target = np.transpose(Wi)
            tar_i0 = i0
            print "Target Image Background white intensity:", i0
        else:
            print "Source Color Basis Matrix:"
            print Wi
            print "Source Image Background white intensity:", i0

        _max = 2000

        print
        if (xdim * ydim) <= (_max * _max):
            print "Small image processing..."
            img = np.asarray(I.read_region((0, 0), level, (xdim, ydim)),
                             dtype=np.float32)[:, :, :3]

            Hiv = session1.run(Hiv1,
                               feed_dict={
                                   Img1: img,
                                   Wis1: Wi,
                                   src_i_0: i0
                               })
            # Hta_Rmax = np.percentile(Hiv,q=99.,axis=0)
            H_Rmax = np.ones((nstains, ), dtype=np.float32)
            for i in range(nstains):
                t = Hiv[:, i]
                H_Rmax[i] = np.percentile(t[t > 0], q=99., axis=0)

            if file_no == 0:
                file_no += 1
                Hta_Rmax = np.copy(H_Rmax)
                print "Target H calculated",
                print "\t \t \t \t \t \t \t Total Time:", round(
                    time.time() - tic, 3)
                display_separator()
                continue

            print "Color Normalization in progress..."

            norm_fac = np.divide(Hta_Rmax, H_Rmax).astype(np.float32)
            session1.run(fwrite,
                         feed_dict={
                             shape: np.array(img.shape),
                             Wit1: Wi_target,
                             Hiv2: Hiv,
                             sav_name: s,
                             tar_i_0: tar_i0,
                             normfac: norm_fac
                         })

            print "File written to:", s
            print "\t \t \t \t \t \t \t \t \t \t Total Time:", round(
                time.time() - tic, 3)
            display_separator()

        else:
            _maxtf = 3000
            x_max = xdim
            y_max = min(max(int(_maxtf * _maxtf / x_max), 1), ydim)
            print "Large image processing..."
            if file_no == 0:
                Hivt = np.memmap('H_target',
                                 dtype='float32',
                                 mode='w+',
                                 shape=(xdim * ydim, 2))
            else:
                Hivs = np.memmap('H_source',
                                 dtype='float32',
                                 mode='w+',
                                 shape=(xdim * ydim, 2))
                sourcenorm = np.memmap('wsi',
                                       dtype='uint8',
                                       mode='w+',
                                       shape=(ydim, xdim, 3))
            x_tl = range(0, xdim, x_max)
            y_tl = range(0, ydim, y_max)
            print "WSI divided into", str(len(x_tl)) + "x" + str(len(y_tl))
            count = 0
            print "Patch-wise H calculation in progress..."
            ind = 0
            perc = []
            for x in x_tl:
                for y in y_tl:
                    count += 1
                    xx = min(x_max, xdim - x)
                    yy = min(y_max, ydim - y)
                    print "Processing:", count, "		patch size", str(
                        xx) + "x" + str(yy),
                    print "\t \t Time since processing started:", round(
                        time.time() - tic, 3)
                    img = np.asarray(I.read_region((int(ds * x), int(ds * y)),
                                                   level, (xx, yy)),
                                     dtype=np.float32)[:, :, :3]

                    Hiv = session1.run(Hiv1,
                                       feed_dict={
                                           Img1: img,
                                           Wis1: Wi,
                                           src_i_0: i0
                                       })
                    if file_no == 0:
                        Hivt[ind:ind + len(Hiv), :] = Hiv
                        _Hta_Rmax = np.ones((nstains, ), dtype=np.float32)
                        for i in range(nstains):
                            t = Hiv[:, i]
                            _Hta_Rmax[i] = np.percentile(t[t > 0],
                                                         q=99.,
                                                         axis=0)
                        perc.append([_Hta_Rmax[0], _Hta_Rmax[1]])
                        ind += len(Hiv)
                        continue
                    else:
                        Hivs[ind:ind + len(Hiv), :] = Hiv
                        _Hso_Rmax = np.ones((nstains, ), dtype=np.float32)
                        for i in range(nstains):
                            t = Hiv[:, i]
                            _Hso_Rmax[i] = np.percentile(t[t > 0],
                                                         q=99.,
                                                         axis=0)
                        perc.append([_Hso_Rmax[0], _Hso_Rmax[1]])
                        ind += len(Hiv)

            if file_no == 0:
                print "Target H calculated",
                Hta_Rmax = np.percentile(np.array(perc), 50, axis=0)
                file_no += 1
                del Hivt
                print "\t \t \t \t \t Time since processing started:", round(
                    time.time() - tic, 3)
                ind = 0
                continue

            print "Source H calculated",
            print "\t \t \t \t \t Time since processing started:", round(
                time.time() - tic, 3)
            Hso_Rmax = np.percentile(np.array(perc), 50, axis=0)
            print "H Percentile calculated",
            print "\t \t \t \t Time since processing started:", round(
                time.time() - tic, 3)

            _normfac = np.divide(Hta_Rmax, Hso_Rmax).astype(np.float32)

            print "Color Normalization in progress..."
            count = 0
            ind = 0
            np_max = 1000

            x_max = xdim
            y_max = min(max(int(np_max * np_max / x_max), 1), ydim)
            x_tl = range(0, xdim, x_max)
            y_tl = range(0, ydim, y_max)
            print "Patch-wise color normalization in progress..."
            total = len(x_tl) * len(y_tl)

            prev_progress = 0
            for x in x_tl:
                for y in y_tl:
                    count += 1
                    xx = min(x_max, xdim - x)
                    yy = min(y_max, ydim - y)
                    pix = xx * yy
                    sh = np.array([yy, xx, 3])

                    #Back projection into spatial intensity space (Inverse Beer-Lambert space)

                    sourcenorm[y:y + yy, x:x + xx, :3] = session1.run(
                        source_norm,
                        feed_dict={
                            Hiv2: np.array(Hivs[ind:ind + pix, :]),
                            Wit1: Wi_target,
                            normfac: _normfac,
                            shape: sh,
                            tar_i_0: tar_i0
                        })

                    ind += pix
                    percent = 5 * int(count * 20 / total)  #nearest 5 percent
                    if percent > prev_progress and percent < 100:
                        print str(percent) + " percent complete...",
                        print "\t \t \t \t \t Time since processing started:", round(
                            time.time() - tic, 3)
                        prev_progress = percent
            print "Color Normalization complete!",
            print "\t \t \t \t Time since processing started:", round(
                time.time() - tic, 3)

            p = time.time() - tic
            s = output_direc + base_s.replace(
                ".", "_") + " (using " + base_t.replace(
                    ".", "_") + " " + correc + ").png"
            print "Saving normalized image..."
            cv2.imwrite(s, cv2.cvtColor(sourcenorm, cv2.COLOR_RGB2BGR))
            del sourcenorm
            print "File written to:", s
            print "\t \t \t \t \t \t \t \t \t Total Time:", round(
                time.time() - tic, 3)
            display_separator()

        file_no += 1
        if os.path.exists("H_target"):
            os.remove("H_target")
        if os.path.exists("H_source"):
            os.remove("H_source")
        if os.path.exists("wsi"):
            os.remove("wsi")

    session1.close()