示例#1
0
def test_obj_fun(inData, params, obj='u_pax', _plot=False):
    # computes ILP with a given obj function and returns KPIs of the solution
    from ExMAS.main import matching
    params.matching_obj = obj
    if "prob" in obj:
        params.minmax = 'max'
    else:
        params.minmax = 'min'
    if obj == 'worst':
        params.minmax = 'max'
        params.matching_obj = 'u_pax'
    inData = matching(inData, params, plot=False)
    if _plot:
        import matplotlib.pyplot as plt
        m_solution = inData.sblts.m.copy()
        fig, ax = plt.subplots()
        for col in m_solution.columns:
            if inData.sblts.rides.loc[col].selected == 0:
                m_solution[col] = inData.sblts.m[col]
            else:
                m_solution[col] = inData.sblts.m[col] * 5

        ax.imshow(m_solution, cmap='Greys', interpolation='Nearest')
        ax.set_ylabel('rides')
        _ = ax.set_xlabel('trips')
        print('grey - feasible, black - selected')
    inData = calc_solution_PoA(inData)

    return KPIs(inData)
示例#2
0
def level_3(inData, params):
    # second level of ExMAS
    inData, params = prepare_level3(inData, params)  # parameterize for second ExMAS
    inData.requests = inData.transitize.requests2  # set the new requests for ExMAS
    params.nP = inData.requests.shape[0]
    inData = list_unmergables(inData)  # list 's2s' rides that cannot be matched (they share the same traveller)

    # ExMAS 2
    inData_copy = ExMAS.main(inData, params, plot=False)  # pooling of 2nd level rides (s2s)

    inData = process_level3(inData, inData_copy)

    inData = matching(inData, params)  # final solution

    inData.transitize.rides['solution_3'] = inData.sblts.rides.selected.values

    return inData, params
示例#3
0
def level_3(inData, params):
    # set parameters for the second level of ExMAS
    inData, params = prepare_level3(inData, params)
    inData = list_unmergables(inData)
    inData_copy = ExMAS.main(inData, params,
                             plot=False)  # pooling of 2nd level rides (s2s)
    inData.transitize.rides3 = inData_copy.sblts.rides.copy()

    inData_copy.sblts.rides.to_csv(
        '{}_ridesExMAS2.csv'.format(EXPERIMENT_NAME))
    inData = process_level3(inData)

    inData = matching(inData, params)  # final solution
    #inData.sblts.requests.to_csv('{}_requestsExMAS2.csv'.format(EXPERIMENT_NAME))

    inData.transitize.rides['solution_3'] = inData.sblts.rides.selected.values

    inData.transitize.rides.to_csv('{}_rides.csv'.format(EXPERIMENT_NAME))

    return inData, params
示例#4
0
def level_2(inData, params):
    if params.get('parallel', False):
        import dask.dataframe as dd
        # single_applied = to_apply[to_apply.degree==1].apply(lambda x: transitize(inData, x), axis=1)

        ddf = dd.from_pandas(inData.sblts.rides, npartitions=params.parallel)

        applied = ddf.map_partitions(lambda dframe: dframe.apply(lambda x: transitize(inData, x), axis=1)).compute(
            scheduler='processes')

        # applied = pd.concat([single_applied,applied.compute()])
    else:
        to_apply = inData.sblts.rides[inData.sblts.rides.degree != 1]
        applied = to_apply.apply(lambda x: transitize(inData, x), axis=1)  # main

    inData.transitize.requests2 = applied  # 's2s' rides at second level

    # store results for rm matrix of 's2s' rides
    if inData.transitize.requests2[inData.transitize.requests2.transitizable].shape[0] > 0:
        inData.transitize.rm2 = pd.concat(
            inData.transitize.requests2[inData.transitize.requests2.efficient].df.values)
    inData.transitize.rm2['pax_id'] = inData.transitize.rm2.index.copy()
    inData.transitize.rm2['traveller'] = inData.transitize.rm2.index.copy()

    inData.transitize.requests2 = inData.transitize.requests2[
        inData.transitize.requests2['efficient']]  # store only efficient ones
    inData.transitize.requests2 = inData.transitize.requests2.apply(
        pd.to_numeric, errors='ignore')  # needed after creating df from dicts

    if inData.transitize.requests2.shape[0] == 0:  # early exit
        inData.logger.warn('No transitable rides, early exit')
        inData.transitize.rides.to_csv('rides.csv')

    else:
        inData.logger.warn('Transitizing: \t{} rides '
                           '\t{} transitizable '
                           '\t{} efficient'.format(inData.transitize.rides1.shape[0],
                                                   inData.transitize.requests2[
                                                       inData.transitize.requests2.transitizable].shape[0],
                                                   inData.transitize.requests2.shape[0]))

        inData.transitize.requests2['indexes_set'] = inData.transitize.requests2.apply(lambda x: set(x.indexes), axis=1)

        # set the indexes of first level rides in the second level rides
        inData.transitize.requests2['low_level_indexes'] = inData.transitize.requests2.apply(
            lambda x: inData.transitize.rm1[inData.transitize.rm1.ride == x.name].traveller.to_list(),
            axis=1)
        inData.transitize.requests2['low_level_indexes_set'] = inData.transitize.requests2.low_level_indexes.apply(set)
        inData.transitize.requests2['low_level_indexes'] = inData.transitize.requests2.low_level_indexes.apply(list)
        inData.transitize.requests2['pax_id'] = inData.transitize.requests2.index.copy()

        # store efficient 's2s' rides and concat to ExMAS rides
        to_concat = inData.transitize.requests2
        to_concat['solution_0'] = 0  # they are not part of any previous solutions
        to_concat['solution_1'] = 0
        to_concat['d2d_reference'] = to_concat.pax_id  # store reference to previous ride
        to_concat['kind'] = 's2s'
        to_concat = to_concat[
            ['indexes', 'u_pax', 'u_veh', 'kind', 'ttrav',
             'orig_walk_time', 'dest_walk_time', 'times', 'u_paxes',
             'solution_0', 'solution_1', 'low_level_indexes_set', 'origin', 'destination', 'd2d_reference']]
        inData.transitize.rides = pd.concat([inData.transitize.rides, to_concat]).reset_index()

        # store rm
        to_concat = inData.transitize.rm2
        to_concat['ttrav'] = to_concat['s2s_ttrav']
        to_concat['u'] = to_concat['u_sh']
        to_concat = to_concat[['ride', 'traveller', 'dist',
                               'ttrav', 'delay', 'u',
                               'orig_walk_time', 'dest_walk_time']]  # output for rm2

        def get_ride_index(row):
            ride = inData.transitize.rides[inData.transitize.rides.d2d_reference == row.ride]
            if ride.shape[0] == 0:
                print(row, ride)
                raise AttributeError

            return ride.squeeze().name

        # get the proper id of a ride (in a concatenated df of .rides)
        to_concat['ride'] = to_concat.apply(lambda row: get_ride_index(row), axis=1)

        inData.transitize.rm = pd.concat([inData.transitize.rm, to_concat])

        inData.transitize.requests2.index = inData.transitize.rides[inData.transitize.rides.kind == 's2s'].index.values

        inData.sblts.rides = inData.transitize.rides  # store rides for ExMAS
        params.process_matching = False
        inData = matching(inData, params)  # find a new solution with s2s
        inData.transitize.rides['solution_2'] = inData.sblts.rides.selected.values  # this is a new solution at level 2
        return inData, params
示例#5
0
文件: shared.py 项目: fxjung/MaaSSim
def prep_shared_rides(_inData, sp, _print=False):
    """
    Determines which requests are shareable,
    computes the matching with ExMAS,
    generates schedule of shared (or non shared) rides
    :param _inData:
    :param sp:
    :param sblt: external ExMas library (import ExMAS.main as sblt) optional
    :param _print:
    :return:
    """

    sp.share = sp.get('share', 0)  # share of shareable rides
    requests = _inData.requests

    if sp.shape == 0:
        requests.shareable = False  # all requests are not shareable
    elif sp.share == 1:
        requests.shareable = True  # all requests are shareable
    else:  # mixed - not fully tested, can be unstable
        requests.shareable = requests.apply(
            lambda x: False if random.random() >= sp.share else True, axis=1)

    if requests[requests.shareable].shape[0] == 0:  # no sharing
        _inData.requests['ride_id'] = _inData.requests.index.copy(
        )  # rides are schedules, we do not share
        _inData.requests['position'] = 0  # everyone has first position
        # _inData.requests['sim_schedule'] = _inData.requests.apply(lambda x: , axis=1)

    else:  # sharing
        if sp.without_matching:  # was the shareability graph comouted before?
            _inData = matching(_inData, sp,
                               plot=False)  # if so, do only matching
        else:
            _inData = ExMAS.main(_inData, sp,
                                 plot=False)  # compute graph and do matching

        # prepare schedules
        schedule = _inData.sblts.schedule
        r = _inData.sblts.requests
        schedule['nodes'] = schedule.apply(
            lambda s: [None] + list(r.loc[s.indexes_orig].origin.values) +
            list(r.loc[s.indexes_dest].destination.values),
            axis=1)

        schedule['req_id'] = schedule.apply(
            lambda s: [None] + s.indexes_orig + s.indexes_dest, axis=1)

        _inData.requests[
            'ride_id'] = r.ride_id  # store ride index in requests for simulation
        _inData.requests[
            'position'] = r.position  # store ride index in requests for simulation
        _inData.sblts.schedule['sim_schedule'] = _inData.sblts.schedule.apply(
            lambda x: make_schedule_shared(x), axis=1)

    def set_sim_schedule(x):
        if not x.shareable:
            return make_schedule_nonshared([x])
        elif 'platform' in x and x.platform == -1:
            return make_schedule_nonshared([x])
        else:
            return _inData.sblts.schedule.loc[x.ride_id].sim_schedule

    _inData.requests['sim_schedule'] = _inData.requests.apply(
        lambda x: set_sim_schedule(x), axis=1)

    _inData.schedules_queue = pd.DataFrame([[i, _inData.schedules[i].node[1]]
                                            for i in _inData.schedules.keys()],
                                           columns=[0, 'origin']).set_index(0)

    return _inData
示例#6
0
def single_eval(inData,
                params,
                EXPERIMENT_NAME,
                MATCHING_OBJS,
                PRUNINGS,
                PRICING,
                minmax=('min', 'max'),
                store_res=True):
    inData = prunings.determine_prunings(
        inData, PRUNINGS)  # set pruned to boolean flag for matching
    inData.results.rides['pruned_Pricing-{}_Pruning-{}'.format(
        PRICING, PRUNINGS)] = inData.sblts.rides['pruned']

    inData.sblts.rides['platform'] = inData.sblts.rides.pruned.apply(
        lambda x: 1 if x else -1)  # use only pruned rides in the matching
    inData.sblts.requests['platform'] = 1
    inData.requests['platform'] = inData.requests.apply(lambda x: [1], axis=1)

    for params.matching_obj in MATCHING_OBJS:  # for each objective function
        for params.minmax in minmax:  # best and worst prices of anarchy
            res_name = 'Experiment-{}_Pricing-{}_Objective-{}_Pruning-{}_minmax-{}'.format(
                EXPERIMENT_NAME, PRICING, MATCHING_OBJS, PRUNINGS,
                params.minmax)  # name of experiment
            inData.logger.warning(res_name)
            if 'TSE' not in PRUNINGS:
                inData = matching(inData, params,
                                  make_assertion=False)  # < - main matching
            else:
                inData = prunings.algo_TSE(
                    inData, params.matching_obj
                )  # here we do not do ILP, but heuristical algorithm

            inData = evaluate_shareability(inData, params)

            if store_res:
                inData.results.rides[
                    res_name] = inData.sblts.rides.selected.values  # store results (selected rides)

                inData.sblts.rides.selected.name = res_name
                inData.results.rm = inData.results.rm.join(
                    inData.sblts.rides.selected,
                    on='ride')  # store selected rides in the multiindex table

                rm = inData.results.rm
                pruneds = inData.sblts.rides[inData.sblts.rides.pruned ==
                                             True].index
                rm['bestpossible_{}'.format(PRICING)] = rm.apply(
                    lambda r: rm.loc[pruneds, :][
                        (rm.traveller == r.traveller)][PRICING].min(),
                    axis=1)
                selecteds = rm.loc[inData.sblts.rides[
                    inData.sblts.rides.selected == True].index]
                inData.sblts.res['eq13'] = selecteds[
                    selecteds['bestpossible_{}'.format(PRICING)] ==
                    selecteds[PRICING]].shape[0] / selecteds.shape[0]

                inData.sblts.res['pricing'] = MATCHING_OBJS[
                    0]  # columns for KPIs table
                inData.sblts.res['algo'] = PRUNINGS[0]
                inData.sblts.res['experiment'] = EXPERIMENT_NAME
                inData.sblts.res['minmax'] = params.minmax
                inData.sblts.res['obj'] = params.matching_obj
                inData.results.KPIs[
                    res_name] = inData.sblts.res  # stack columns with results
    return inData
示例#7
0
def single_eval_windows(inData,
                        params,
                        EXPERIMENT_NAME,
                        MATCHING_OBJS,
                        PRUNINGS,
                        PRICING,
                        minmax=('min', 'max'),
                        store_res=True):  # evaluate windows-based approach
    # this has to be called last, since it screws the inData.sblts.rides

    params.multi_platform_matching = False
    params.assign_ride_platforms = True

    # clear
    inData.sblts.rides['pruned'] = True
    inData.sblts.mutually_exclusives = []
    params.matching_obj = 'u_veh'
    windows = timewindow_benchmark.ExMAS_windows(inData, params)

    # compute degrees
    inData.sblts.rides['degree'] = inData.sblts.rides.apply(
        lambda x: len(x.indexes), axis=1)

    # delays
    inData.sblts.rides['treqs'] = inData.sblts.rides.apply(
        lambda x: inData.sblts.requests.loc[x.indexes].treq.values, axis=1)

    def calc_deps(r):
        deps = [r.times[0]]
        for d in r.times[1:r.degree]:
            deps.append(deps[-1] + d)  # departure times
        t = windows.sblts.requests
        return deps

    windows.sblts.rides['deps'] = windows.sblts.rides.apply(calc_deps, axis=1)

    windows.sblts.rides[
        'delays'] = windows.sblts.rides['deps'] - windows.sblts.rides['treqs']

    windows.sblts.rides['ttravs'] = windows.sblts.rides.apply(lambda r: [
        sum(r.times[i + 1:r.indexes_orig.index(r.indexes[i]) + r.degree + 1 + r
                    .indexes_dest.index(r.indexes[i])])
        for i in range(r.degree)
    ],
                                                              axis=1)

    multis = list()
    for i, ride in windows.sblts.rides.iterrows():
        for t in ride.indexes:
            multis.append([ride.name, t])
    multis = pd.DataFrame(index=pd.MultiIndex.from_tuples(multis))

    multis['ride'] = multis.index.get_level_values(0)
    multis['traveller'] = multis.index.get_level_values(1)
    multis = multis.join(windows.sblts.requests[['treq', 'dist', 'ttrav']],
                         on='traveller')
    multis = multis.join(windows.sblts.rides[[
        'u_veh', 'u_paxes', 'degree', 'indexes', 'ttravs', 'delays'
    ]],
                         on='ride')
    multis['order'] = multis.apply(lambda r: r.indexes.index(r.traveller),
                                   axis=1)
    multis['ttrav_sh'] = multis.apply(lambda r: r.ttravs[r.order], axis=1)
    multis['delay'] = multis.apply(lambda r: r.delays[r.order], axis=1)
    # multis['u'] = multis.apply(lambda r: r.u_paxes[r.order], axis=1)
    multis['shared'] = multis.degree > 1
    multis['ride_time'] = multis.u_veh
    multis = multis[[
        'ride', 'traveller', 'shared', 'degree', 'treq', 'ride_time', 'dist',
        'ttrav', 'ttrav_sh', 'delay'
    ]]
    windows.sblts.rides_multi_index = multis

    windows = pricings.update_costs(windows, params)

    for params.matching_obj in ['u_veh']:  # two objective functions
        for params.minmax in ['min',
                              'max']:  # best and worst prices of anarchy
            res_name = 'Experiment-{}_Pricing-{}_Objective-{}_Pruning-{}_minmax-{}'.format(
                EXPERIMENT_NAME, PRICING, MATCHING_OBJS, PRUNINGS,
                params.minmax)  # name of experiment
            inData.logger.warning(res_name)
            windows = matching(windows, params,
                               make_assertion=False)  # < - main matching
            windows = evaluate_shareability(windows, params)
            windows.sblts.res['pricing'] = MATCHING_OBJS[0]
            windows.sblts.res['algo'] = PRUNINGS[0]
            windows.sblts.res['minmax'] = params.minmax
            windows.sblts.res['obj'] = params.matching_obj
            inData.results.KPIs[res_name] = windows.sblts.res
    return inData
示例#8
0
def evolve(inData, params, _print=False, _plot=False):
    """
    Day to Day evolution of virus spreading from initial population
    starts with initial share of infected population and gradually infects co-riders
    :param inData:
    :param params:
    :param _print:
    :param _plot:
    :return:
    """
    def recovery(x):
        # did I recover today (after quarantine)
        if x.quarantine_day == None:
            return x.state
        else:
            if x.quarantine_day + params.corona.recovery == day:
                return 'R'  # back
            else:
                return x.state

    # initialise
    day = 0
    ret = dict()  # report - trace number of passengers in each state
    inData = make_population(
        inData, params
    )  # determine who is active (pool to draw everyday) who is active today
    # and initially infected
    ret[day] = inData.passengers.groupby('state').size()

    while "I" in ret[
            day].index:  # main D2D loop, until there are still infected (we do not care about Quarantined)
        day += 1  # incerement
        inData.logger.info('day {}'.format(day))

        # quarantines
        inData.passengers['newly_quarantined'] = inData.passengers.apply(
            lambda r: False if r.infection_day is None else day - r.
            infection_day == params.corona.time_to_quarantine,
            axis=1)  # are there newly quarantined travellers?
        inData.passengers.quarantine_day = inData.passengers.apply(
            lambda x: day if x.newly_quarantined else x.quarantine_day, axis=1)
        inData.passengers.state = inData.passengers.apply(
            lambda r: 'Q' if r.newly_quarantined else r.state, axis=1)

        # recoveries
        inData.passengers.state = inData.passengers.apply(
            lambda x: recovery(x), axis=1)

        # active today
        active_ones = inData.passengers[(inData.passengers.active == True)]
        active_ones = active_ones.sample(
            int(active_ones.shape[0] *
                params.corona.p))  # those are active today
        active_ones = active_ones[active_ones.state !=
                                  'Q']  # except those quarantined
        inData.passengers['active_today'] = False
        inData.passengers['active_today'].loc[
            active_ones.
            index] = True  # those will be matched and then may be infected

        # if platform is [-1] passenger is not matched
        inData.passengers['platforms'] = inData.passengers.apply(
            lambda x: [0] if x.active_today else [-1], axis=1)
        inData.requests['platform'] = inData.requests.apply(
            lambda row: inData.passengers.loc[row.name].platforms[0], axis=1)
        inData.sblts.requests['platform'] = inData.requests['platform']

        # redo matching
        inData = matching(inData, params, _print)

        #output KPIs
        retout = inData.passengers.groupby('state').size()
        r = inData.sblts.requests

        schedule = inData.sblts.schedule
        schedule['ttrav'] = schedule.apply(lambda x: sum(x.times[1:]), axis=1)

        retout['VehHourTrav'] = schedule.ttrav.sum()
        retout['VehHourTrav_ns'] = r.ttrav.sum()

        retout['PassHourTrav'] = r.ttrav_sh.sum()
        retout['PassHourTrav_ns'] = r.ttrav.sum()

        retout['PassUtility'] = r.u_sh.sum()
        retout['PassUtility_ns'] = r.u.sum()
        retout['nRides'] = schedule.shape[0]

        # and infect
        inData = infect(inData, day, params)
        ret[day] = retout
        inData.logger.info(ret[day])
        inData.logger.info(
            'Day: {}\t infected: {}\t quarantined: '
            '{}\t recovered: {} \t susceptible: {}, active today: {}.'.format(
                day,
                inData.passengers[inData.passengers.state == "I"].shape[0],
                inData.passengers[inData.passengers.state == "Q"].shape[0],
                inData.passengers[inData.passengers.state == "R"].shape[0],
                inData.passengers[inData.passengers.state == "S"].shape[0],
                inData.passengers[inData.passengers.active_today ==
                                  True].shape[0]))
        # go to next day (if still anyone is infected)
        if day > params.corona.get('max_days', 99999):  # early exit
            break

    # end of the loop
    inData.report = pd.DataFrame(ret)

    if _plot:
        plot_spread(inData)

    if params.get('report', False):  # store results to csvs
        replication_id = random.randint(0, 100000)
        ret = inData.report.T.fillna(0)
        filename = "experiment-{}_nP-{}_init-{}_p-{}_quarantine-{}_recovery-{}_repl-{}.csv".format(
            params.corona.EXPERIMENT_NAME,
            params.nP * params.corona.participation,
            params.corona.initial_share, params.corona.p,
            params.corona.time_to_quarantine, params.corona.recovery,
            replication_id)
        ret.to_csv(
            "ExMAS/data/corona/corona_" +
            filename)  # day to day evolution of travellers in each state
        inData.passengers.to_csv(
            "ExMAS/data/corona/population_" +
            filename)  # pax info (when infected and by whom)

    return inData
示例#9
0
def level_2(inData, params):
    to_swifter = inData.sblts.rides[inData.sblts.rides.degree != 1]
    if params.get('swifter', False):
        from_swifter = to_swifter.swifter.apply(
            lambda x: transitize(inData, x), axis=1)
    else:
        from_swifter = to_swifter.apply(lambda x: transitize(inData, x),
                                        axis=1)  # main

    inData.transitize.requests2 = from_swifter

    if inData.transitize.requests2[
            inData.transitize.requests2.transitizable].shape[0] > 0:
        inData.transitize.rm2 = pd.concat(inData.transitize.requests2[
            inData.transitize.requests2.transitizable].df.values)
    inData.transitize.rm2['pax_id'] = inData.transitize.rm2.index.copy()
    inData.transitize.rm2['traveller'] = inData.transitize.rm2.index.copy()

    inData.transitize.requests2 = inData.transitize.requests2[
        inData.transitize.requests2['efficient']]
    inData.transitize.requests2 = inData.transitize.requests2.apply(
        pd.to_numeric, errors='ignore')

    if inData.transitize.requests2.shape[0] == 0:
        inData.logger.warn('No transitable rides')
        inData.transitize.rides.to_csv('rides.csv')

    else:
        inData.logger.warn(
            'Transitizing: \t{} rides '
            '\t{} transitizable '
            '\t{} efficient'.format(
                inData.transitize.rides1.shape[0], inData.transitize.requests2[
                    inData.transitize.requests2.transitizable].shape[0],
                inData.transitize.requests2.shape[0]))
        inData.transitize.rm2.to_csv('{}_rm2.csv'.format(EXPERIMENT_NAME))

        inData.transitize.requests2[
            'indexes_set'] = inData.transitize.requests2.apply(
                lambda x: set(x.indexes), axis=1)

        # set the indexes of first level rides in the second level rides
        inData.transitize.requests2[
            'low_level_indexes'] = inData.transitize.requests2.apply(
                lambda x: inData.transitize.rm1[inData.transitize.rm1.ride == x
                                                .name].traveller.to_list(),
                axis=1)
        inData.transitize.requests2[
            'low_level_indexes_set'] = inData.transitize.requests2.low_level_indexes.apply(
                set)
        inData.transitize.requests2[
            'low_level_indexes'] = inData.transitize.requests2.low_level_indexes.apply(
                list)
        inData.transitize.requests2[
            'pax_id'] = inData.transitize.requests2.index.copy()

        to_concat = inData.transitize.requests2
        to_concat['solution_0'] = 0
        to_concat['solution_1'] = 0
        to_concat['d2d_reference'] = to_concat.pax_id
        to_concat['kind'] = 's2s'
        to_concat = to_concat[[
            'indexes', 'u_pax', 'u_veh', 'kind', 'ttrav', 'orig_walk_time',
            'dest_walk_time', 'times', 'u_paxes', 'solution_0', 'solution_1',
            'low_level_indexes_set', 'origin', 'destination', 'd2d_reference'
        ]]
        inData.transitize.rides = pd.concat(
            [inData.transitize.rides, to_concat]).reset_index()

        to_concat = inData.transitize.rm2

        to_concat['ttrav'] = to_concat['s2s_ttrav']

        inData.transitize.rm = pd.contat([
            inData.transitize.rm, to_concat[[
                'ride', 'traveller', 'dist', 'ttrav', 'delay', 'u_sh',
                'origin_walk_time', 'dest_walk_time', 'delay'
            ]]
        ])

        inData.transitize.requests2.index = inData.transitize.rides[
            inData.transitize.rides.kind == 's2s'].index.values

        #inData.transitize.requests2.to_csv('{}_requests2.csv'.format(EXPERIMENT_NAME))

        inData.sblts.rides = inData.transitize.rides
        params.process_matching = False

        inData = matching(inData, params)  # solution with s2s
        inData.transitize.rides[
            'solution_2'] = inData.sblts.rides.selected.values
        #inData.transitize.rides.to_csv('{}_rides2.csv'.format(EXPERIMENT_NAME))

        return inData, params