deepFogGuard_no_information_flow_map, reliability_setting, output_list, training_labels, test_data, test_labels) calc_accuracy(iteration, "Vanilla", Vanilla, Vanilla_no_information_flow_map, reliability_setting, output_list, training_labels, test_data, test_labels) # clear session so that model will recycled back into memory K.clear_session() gc.collect() del deepFogGuard del ResiliNet del Vanilla # calculate average accuracies from all expected accuracies for reliability_setting in reliability_settings: ResiliNet_acc = average(output["ResiliNet"][str(reliability_setting)]) deepFogGuard_acc = average( output["deepFogGuard"][str(reliability_setting)]) Vanilla_acc = average(output["Vanilla"][str(reliability_setting)]) output_list.append( str(reliability_setting) + " ResiliNet Accuracy: " + str(ResiliNet_acc) + '\n') output_list.append( str(reliability_setting) + " deepFogGuard Accuracy: " + str(deepFogGuard_acc) + '\n') output_list.append( str(reliability_setting) + " Vanilla Accuracy: " + str(Vanilla_acc) + '\n') print(str(reliability_setting), "ResiliNet Accuracy:", ResiliNet_acc)
hyperconnection_weight, no_information_flow_map, reliability_setting, output_list, training_labels=training_labels, test_data=test_data, test_labels=test_labels) # clear session so that model will recycled back into memory K.clear_session() gc.collect() del hyperconnection_weight # calculate average accuracies for reliability_setting in reliability_settings: for weight_scheme in weight_schemes: hyperconnection_weight_acc = average( output[model_name][weight_scheme][str(reliability_setting)]) output_list.append( str(reliability_setting) + str(weight_scheme) + " " + model_name + ": " + str(hyperconnection_weight_acc) + '\n') print(str(reliability_setting), weight_scheme, model_name, ":", hyperconnection_weight_acc) hyperconnection_weight_std = np.std( output[model_name][weight_scheme][str(reliability_setting)], ddof=1) output_list.append( str(reliability_setting) + str(weight_scheme) + " " + model_name + " std: " + str(hyperconnection_weight_std) + '\n') print(str(reliability_setting), weight_scheme, model_name, "std:", hyperconnection_weight_std) write_n_upload(output_name, output_list, use_GCP)
model, no_information_flow_map[tuple( skip_hyperconnection_configuration)], reliability_setting, output_list, training_labels=training_labels, test_data=test_data, test_labels=test_labels) # clear session so that model will recycled back into memory K.clear_session() gc.collect() del model for reliability_setting in reliability_settings: for skip_hyperconnection_configuration in skip_hyperconnection_configurations: output_list.append(str(reliability_setting) + '\n') acc = average(output[model_name][str(reliability_setting)][str( skip_hyperconnection_configuration)]) std = np.std(output[model_name][str(reliability_setting)][str( skip_hyperconnection_configuration)], ddof=1) output_list.append( str(reliability_setting) + str(skip_hyperconnection_configuration) + str(acc) + '\n') output_list.append( str(reliability_setting) + str(skip_hyperconnection_configuration) + str(std) + '\n') print(str(reliability_setting), acc) print(str(reliability_setting), std) write_n_upload(output_name, output_list, use_GCP) print(output)
no_information_flow_map, reliability_setting, output_list, training_labels=training_labels, test_data=test_data, test_labels=test_labels) # clear session so that model will recycled back into memory K.clear_session() gc.collect() del model for reliability_setting in reliability_settings: for weight_scheme in weight_schemes: output_list.append( str(reliability_setting) + str(weight_scheme) + '\n') acc = average( output[model_name][weight_scheme][str(reliability_setting)]) output_list.append( str(reliability_setting) + str(weight_scheme) + str(acc) + '\n') print(str(reliability_setting), weight_scheme, acc) std = np.std( output[model_name][weight_scheme][str(reliability_setting)], ddof=1) output_list.append( str(reliability_setting) + str(weight_scheme) + str(std) + '\n') print(str(reliability_setting), weight_scheme, std) write_n_upload(output_name, output_list, use_GCP) print(output)
1] = calculateExpectedAccuracy( ResiliNet_failout_rate_fixed, no_information_flow_map, reliability_setting, output_list, training_labels=training_labels, test_data=test_data, test_labels=test_labels) # clear session so that model will recycled back into memory K.clear_session() gc.collect() del ResiliNet_failout_rate_fixed # calculate average accuracies for variable failout rate for reliability_setting in reliability_settings: ResiliNet_failout_rate_acc = average( output["Variable Failout 1x"][str(reliability_setting)]) output_list.append( str(reliability_setting) + " Variable Failout 1x: " + str(ResiliNet_failout_rate_acc) + '\n') print(reliability_setting, "Variable Failout 1x:", ResiliNet_failout_rate_acc) ResiliNet_failout_rate_std = np.std( output["Variable Failout 1x"][str(reliability_setting)], ddof=1) output_list.append( str(reliability_setting) + " Variable Failout 1x std: " + str(ResiliNet_failout_rate_std) + '\n') print(str(reliability_setting), " Variable Failout 1x std:", ResiliNet_failout_rate_std) # calculate average accuracies for fixed failout rate for failout_survival_setting in failout_survival_settings:
calc_accuracy(iteration, "ResiliNet", ResiliNet, ResiliNet_no_information_flow_map, reliability_setting, output_list, test_generator, num_test_examples) # calc_accuracy(iteration, "deepFogGuard", deepFogGuard, deepFogGuard_no_information_flow_map, reliability_setting, output_list,test_generator, num_test_examples) # calc_accuracy(iteration, "Vanilla", Vanilla, Vanilla_no_information_flow_map, reliability_setting, output_list,test_generator, num_test_examples) # clear session so that model will recycled back into memory K.clear_session() gc.collect() # del deepFogGuard del ResiliNet # del Vanilla # calculate average accuracies from all expected accuracies for reliability_setting in reliability_settings: ResiliNet_acc = average(output["ResiliNet"][str(reliability_setting)]) # deepFogGuard_acc = average(output["deepFogGuard"][str(reliability_setting)]) # Vanilla_acc = average(output["Vanilla"][str(reliability_setting)]) ResiliNet_std = np.std(output["ResiliNet"][str(reliability_setting)], ddof=1) # deepFogGuard_std = np.std(output["deepFogGuard"][str(reliability_setting)],ddof = 1) # Vanilla_std = np.std(output["Vanilla"][str(reliability_setting)],ddof = 1) output_list.append( str(reliability_setting) + " ResiliNet Accuracy: " + str(ResiliNet_acc) + '\n') # output_list.append(str(reliability_setting) + " deepFogGuard Accuracy: " + str(deepFogGuard_acc) + '\n') # output_list.append(str(reliability_setting) + " Vanilla Accuracy: " + str(Vanilla_acc) + '\n') output_list.append(