def run_exp(param):
    """Run an experiment according to given parameters."""
    first_gen = read_first_gen_files(param[0])

    e = experiment(condition=param[1],
                   comm_self_connected=param[2],
                   run_num=param[3],
                   first_gen=first_gen,
                   today=today,
                   pop=pop,
                   gen=gen,
                   trial_num=trial_num,
                   include_top=top)

    e.run()
    e_filename = 'Data/{}_comm_cs_conn_Run{}.exp'.format(today, param[3])
    pickle.dump(e, open(e_filename, 'wb'))
    result = 'done'
    print('ok:', param)
    return result
from Experiment import experiment
from Generate_First_Gen import read_first_gen_files
import sys
import pickle

pop = 10
gen = 3
trial_num = 3
top = 2
today = '2019_04_32'

run_num = int(sys.argv[1])  # number designating the current run
first_gen_file = 'FirstGen/Run{}Pop{}65.txt'.format(run_num, pop)
first_gen = read_first_gen_files(first_gen_file)

e = experiment(condition='comm',
               comm_self_connected=False,
               run_num=run_num,
               first_gen=first_gen,
               today=today,
               pop=pop,
               gen=gen,
               trial_num=trial_num,
               include_top=top)

if __name__ == '__main__':
    e.run()
    e_filename = 'Data/{}_comm_cs_disconn_Run{}.exp'.format(today, run_num)
    pickle.dump(e, open(e_filename, 'wb'))
示例#3
0
      , 'rank_score', 'rank_score_upper', 'correct_score', 'correct_score_upper', 'correct_score_hungarian'\
      , 'pairs_computed'])

for a in adaptiveLSH:
    for n in noise:
        for b in bandNumber:
            for l in noise_level:
                df = experiment(df,
                                filename='metadata/email.edges',
                                nodeAttributeFile=None,
                                multipleGraph=False,
                                is_perm=False,
                                has_noise=n,
                                noise_level=l,
                                plotAttribute=False,
                                plotBucket=False,
                                plotCorrectness=False,
                                GraphType='Undirected',
                                bandNumber=b,
                                adaptiveLSH=a,
                                LSHType='Cosine',
                                compute_sim=True,
                                compute_hungarian=False,
                                loop_num=1)
                df = experiment(df,
                                filename='metadata/email.edges',
                                nodeAttributeFile=None,
                                multipleGraph=False,
                                is_perm=False,
                                has_noise=n,
                                noise_level=l,
示例#4
0
n = noise[0]
l = noise_level[0]
for gfile in gfiles:
    for b in bandNumber:
        for thr in thresholds:
            if thr > b:
                continue
            df = experiment(df,
                            filename=gfile[0],
                            nodeAttributeFile=None,
                            multipleGraph=False,
                            is_perm=False,
                            has_noise=n,
                            noise_level=l,
                            plotAttribute=False,
                            plotBucket=False,
                            plotCorrectness=False,
                            GraphType=gfile[1],
                            bandNumber=b,
                            adaptiveLSH=a,
                            LSHType='Cosine',
                            compute_sim=True,
                            compute_hungarian=False,
                            loop_num=3,
                            threshold=thr)
            df = experiment(df,
                            filename=gfile[0],
                            nodeAttributeFile=None,
                            multipleGraph=False,
                            is_perm=False,
                            has_noise=n,
                            noise_level=l,
示例#5
0
    elif cond == '3':
        genome_size = 69
    elif cond == '4':
        genome_size = 65
    else:
        print('Error: please enter a valid condition.')

    run_num = int(sys.argv[2])

    # The corresponding first gen files should be generated before running this
    # via the generate_first_gen function
    # There should be 2 different files for each run
    # The pop argument is there mostly to avoid naming conflict
    first_gen_file = 'FirstGen/{}Run{}Pop{}{}.txt'.format(
        prefix, run_num, pop, genome_size)
    first_gen = read_first_gen_files(first_gen_file)

    e = experiment(condition=cond,
                   run_num=run_num,
                   first_gen=first_gen,
                   today=prefix,
                   pop=pop,
                   gen=gen,
                   trial_num=trial_num,
                   include_top=top)

    e.run()
    e_filename = 'Data/Cond{}Run{}/{}_{}_{}_Run{}.exp'.format(
        cond, run_num, prefix, e.condition, e.csc, run_num)
    pickle.dump(e, open(e_filename, 'wb'))