def check_data(): dataset = data_input_fn(FLAGS, 'NOT NEEDED') for imgs, gts in dataset: print(imgs.shape, gts.shape) for ii in range(imgs.shape[0]): dat = np.concatenate((imgs[ii], gts[ii]), axis=1) plt.imshow(dat) plt.show()
def check_data(): dataset = data_input_fn(FLAGS) COUNT = 10 counter = 0 for imgs, gts in dataset: print(imgs.shape, gts.shape) for ii in range(imgs.shape[0]): counter += 1 dat = np.concatenate((imgs[ii], gts[ii]), axis=1) plt.imshow(dat) plt.show() if counter >= COUNT: break if counter >= COUNT: break
def eval_in_fn(): FLAGS.MODE = 'eval' return data_input_fn(FLAGS, 'eval')
def train_in_fn(): return data_input_fn(FLAGS, 'train')