return train_cv_metric, val_cv_metric, test_metric, all_train_metric if __name__ == '__main__': from FAE.DataContainer.DataContainer import DataContainer from FAE.FeatureAnalysis.Normalizer import NormalizerZeroCenter from FAE.FeatureAnalysis.Classifier import SVM, LR, LDA, LRLasso, GaussianProcess, NaiveBayes, DecisionTree, RandomForest, AE, AdaBoost import numpy as np train_data_container = DataContainer() train_data_container.Load( r'C:\MyCode\FAEGitHub\FAE\Example\withoutshape\non_balance_features.csv' ) normalizer = NormalizerZeroCenter() train_data_container = normalizer.Run(train_data_container) data = train_data_container.GetArray() label = np.asarray(train_data_container.GetLabel()) # param_list = [ # {"hidden_layer_sizes": [(30,), (100,)], # "solver": ["adam"], # "alpha": [0.0001, 0.001], # "learning_rate_init": [0.001, 0.01]} # ] # from sklearn.model_selection import ParameterGrid # pl = ParameterGrid(param_list) cv = CrossValidation5Folder()
input_data_container = output return output def SaveInfo(self, store_folder, all_features): for fs in self.__selector_list: fs.SaveInfo(store_folder, all_features) def SaveDataContainer(self, data_container, store_folder, store_key): for fs in self.__selector_list: fs.SaveDataContainer(data_container, store_folder, store_key) ################################################################ if __name__ == '__main__': from FAE.DataContainer.DataContainer import DataContainer from FAE.FeatureAnalysis.Normalizer import NormalizerZeroCenter from FAE.FeatureAnalysis.DimensionReduction import DimensionReductionByPCC dc = DataContainer() pcc = DimensionReductionByPCC() fs = FeatureSelectByKruskalWallis(selected_feature_number=5) dc.Load(r'..\..\Demo\train_numeric_feature.csv') dc = NormalizerZeroCenter.Run(dc) dc = pcc.Run(dc) print(dc.GetArray().shape) dc = fs.Run(dc) print(dc.GetArray().shape)