示例#1
0
def LogFactorMaxProduct(F1, F2, variableList):
    """ Computes the max-product of two factors specified in log-scale """
    scope = list(
        set(F1.scope).union(set(F2.scope)).difference(set(variableList)))
    eDim = 1
    for var in variableList:
        eDim = eDim * var.num_states
    F = Factor(scope)
    j, k = 0, 0
    assignment = [0 for l in range(len(variableList) + len(scope))]
    for i in range(F.dimension):
        for _ in range(eDim):
            F.values[i] = max(F.values[i], F1.values[j] + F2.values[k])
            for l in range(len(variableList) + len(scope)):
                assignment[l] = assignment[l] + 1
                if l < len(variableList):
                    var = variableList[l]
                else:
                    var = scope[l - len(variableList)]
                if assignment[l] == var.num_states:
                    assignment[l] = 0
                    j = j - (var.num_states - 1) * F1.getStride(var)
                    k = k - (var.num_states - 1) * F2.getStride(var)
                else:
                    j = j + F1.getStride(var)
                    k = k + F2.getStride(var)
                    break
    return F
示例#2
0
 def parse(self):
     self.factor = Factor()
     self.factor.parse()
     if TokList.checkTok('MULT'):
         TokList.nextToken()
         self.term = Term()
         self.term.parse()
示例#3
0
文件: kpu.py 项目: junkyul/kpu
def main(args):
    print "[Solve ID by local search]"
    N, M, K = int(args[1]), int(args[2]), int(args[3])
    from Factor import Factor
    # sample network
    ChanceVars, DecVars, CPT, Strategy, Utility = sampleChainID(N, M)
    #print "loading model from file...",
    #stime = time.clock()
    #Variables, Factors = read_network_from_file(args[1], useLog=logScale)
    #etime = time.clock() - stime
    #print "done: %d variables, %d factors. \033[91m[%gs]\033[0m" % (len(Variables), len(Factors), etime)
    run(ChanceVars, DecVars, CPT, Strategy, Utility, K, False, 100, True)

    sol = len(DecVars) * [None]
    for n in range(len(DecVars)):
        sol[n] = Factor([DecVars[n]], defaultValue=1.0 / M)
    kPUvalue, kPUit, kPUtime, KPUsize = run(ChanceVars, DecVars, CPT, sol,
                                            Utility, K, False, 100, True)
    sol2 = len(DecVars) * [None]
    for n in range(len(DecVars)):
        sol2[n] = Factor([DecVars[n]], defaultValue=1.0 / M)
    kPUvalue2, kPUit2, kPUtime2, KPUsize2 = run(ChanceVars, DecVars, CPT, sol2,
                                                Utility, K, False, 100, False)
    print
    print "METHOD    \tTIME(s)   \tMAX SIZE  \tVALUE"
    print "Pruned    \t%10s\t%10s\t%g" % (str(kPUtime), str(KPUsize), kPUvalue)
    print "Exhaustive\t%10s\t%10s\t%g" % (str(kPUtime2), str(KPUsize2),
                                          kPUvalue2)
示例#4
0
def LogFactorMaxProduct(F1,F2,variableList):
    """ Computes the max-product of two factors specified in log-scale """
    scope = list(set(F1.scope).union(set(F2.scope)).difference(set(variableList)))
    eDim = 1
    for var in variableList:
        eDim = eDim*var.num_states        
    F = Factor(scope)
    j,k = 0,0
    assignment = [0 for l in range(len(variableList)+len(scope))]
    for i in range(F.dimension):
        for _ in range(eDim):
            F.values[i] = max(F.values[i], F1.values[j]+F2.values[k])
            for l in range(len(variableList)+len(scope)):
                assignment[l] = assignment[l] + 1
                if l < len(variableList):
                    var = variableList[l]
                else:
                    var = scope[l-len(variableList)]
                if assignment[l] == var.num_states:
                    assignment[l] = 0
                    j = j - (var.num_states-1)*F1.getStride(var)
                    k = k - (var.num_states-1)*F2.getStride(var)
                else:
                    j = j + F1.getStride(var)
                    k = k + F2.getStride(var)
                    break
    return F
示例#5
0
    def __init__(self, functions, digitos=3):
        self.agregar = gtk.VBox()
        self.agregar.show()

        self.principal = gtk.VBox()
        self.principal.show()
        self.agregar.pack_start(self.principal, False, False)

        self.llevo = Factor(digitos, functions, -2)
        self.principal.pack_start(self.llevo.agregar, False, False)

        self.factores = Factores(2, digitos, functions, False)
        self.principal.pack_start(self.factores.agregar, False, False)

        self.igual = gtk.HBox()
        self.igual.show()
        self.linea = self.getLineaHor(500)
        self.igual.pack_end(self.linea, False, False)

        self.signo = gtk.Image()
        self.signo.set_from_file("./images/-.gif")
        self.signo.show()
        self.igual.pack_start(self.signo, False, False)

        self.principal.pack_start(self.igual, False, False)

        self.resultado = Factor(digitos + 1, functions, -1)
        self.principal.pack_start(self.resultado.agregar, False, False)

        self.tipo = 1

        self.extra = [self.llevo, self.resultado]
示例#6
0
def LogFactorSumProduct(F1,F2,variableList):
    """ Computes the sum-product of two factors specified in log-scale """
    scope = list(set(F1.scope).union(set(F2.scope)).difference(set(variableList)))
    eDim = 1
    for var in variableList:
        eDim = eDim*var.num_states        
    F = Factor(scope, defaultValue=0.0)
    j,k = 0,0
    c1 = max(F1.values)
    c2 = max(F2.values)
    c = max(c1,c2)
    assignment = [0 for l in range(len(variableList)+len(scope))]
    for i in range(F.dimension):
        for _ in range(eDim):
            F.values[i] += exp(F1.values[j]+F2.values[k]-c)
            for l in range(len(variableList)+len(scope)):
                assignment[l] = assignment[l] + 1
                if l < len(variableList):
                    var = variableList[l]
                else:
                    var = scope[l-len(variableList)]
                if assignment[l] == var.num_states:
                    assignment[l] = 0
                    j = j - (var.num_states-1)*F1.getStride(var)
                    k = k - (var.num_states-1)*F2.getStride(var)
                else:
                    j = j + F1.getStride(var)
                    k = k + F2.getStride(var)
                    break
    for k in range(F.dimension):
        try:
        	F.values[k] = log(F.values[k]) + c
        except ValueError:
        	F.values[k] = LOGZERO
    return F
示例#7
0
class Suma(Operacion):
    def __init__(self, functions, factores=3, digitos=3, correrIDs=0):
        self.agregar = Gtk.HBox()
        self.agregar.show()

        self.principal = Gtk.VBox(False, 0)
        self.principal.show()
        self.agregar.pack_end(self.principal, True, True, 0)

        self.llevo = Factor(digitos, functions, -2)
        self.principal.pack_start(self.llevo.agregar, False, False, 0)

        self.factores = Factores(factores,
                                 digitos,
                                 functions,
                                 True,
                                 correrIDs=correrIDs)
        self.principal.pack_start(self.factores.agregar, False, False, 0)

        self.igual = Gtk.HBox()
        self.igual.show()
        self.linea = self.getLineaHor(500)
        self.igual.pack_end(self.linea, False, False, 0)

        self.signo = Gtk.Image()
        self.signo.set_from_file("./images/+.gif")
        self.signo.show()
        self.igual.pack_start(self.signo, True, True, 0)

        self.principal.pack_start(self.igual, False, True, 10)

        self.resultado = Factor(digitos + 1, functions, -1)
        self.principal.pack_start(self.resultado.agregar, False, False, 0)

        self.tipo = 0

        self.extra = [self.llevo, self.resultado]

    def comprobar(self):
        if (self.resultado.getValor() == self.factores.sumarTodos()):
            return True
        else:
            return False

    def setZoom(self, valor):
        Operacion.setZoom(self, valor)
        if valor == 1:
            self.llevo.setSize("ss")
            self.llevo.digitos.agregar.set_spacing(0)
        elif valor == 2:
            self.llevo.setSize("ss")
            self.llevo.digitos.agregar.set_spacing(40)
        elif valor == 3:
            self.llevo.setSize("s")
            self.llevo.digitos.agregar.set_spacing(40)
        elif valor == 4:
            self.llevo.setSize("m")
            self.llevo.digitos.agregar.set_spacing(40)
    def __init__(self, functions, digitos=2):
        self.agregar = gtk.VBox()
        self.agregar.show()
        self.principal = self.agregar

        arriba = gtk.HBox()
        arriba.show()
        self.agregar.pack_start(arriba, False, False)

        abajo = gtk.HBox()
        abajo.show()
        self.agregar.pack_start(abajo, False, False)

        self.dividendo = Factor(digitos, functions, 0)
        self.divisor = Factor(digitos, functions, 1)
        self.linea2 = self.getLineaVer(100)

        self.igual = gtk.HBox()
        self.igual.show()
        self.linea = self.getLineaHor(250)
        self.igual.pack_end(self.linea)

        arriba.pack_end(self.dividendo.agregar, False, False)
        arriba.pack_end(self.linea2, False, False)
        arriba.pack_end(self.divisor.agregar, False, False)

        self.cociente = Factor(digitos, functions, -1, inverso=True)
        self.restos = Factores(digitos,
                               digitos,
                               functions,
                               True,
                               correrIDs=2,
                               inverso=True)

        der = gtk.VBox()
        der.show()
        der.pack_start(self.igual, False, False)
        der.pack_start(self.cociente.agregar, False, False)

        abajo.pack_end(der, False, False)
        abajo.pack_end(self.restos.agregar, False, False)

        self.factores = self.restos
        self.factores.factores.insert(0, self.divisor)
        self.factores.factores.insert(0, self.dividendo)

        self.resultado = self.cociente
        self.tipo = 3

        self.extra = [
            self.resultado,
        ]
 def buildVariableFactor(self, vName, fName):
     incoming_messages = []
     for fNameNeighbor in self.nodeVariables[vName].getNodeFactorNames():
         if fNameNeighbor != fName:
             msg = self.msgFactorVariable(fNameNeighbor, vName)
             incoming_messages.append(msg)
     if not incoming_messages:
         incoming_messages.append(
             Factor([vName],
                    np.array([1.] * self.nodeVariables[vName].getRank())))
     joined = Factor.joint(incoming_messages)
     #normalized =joined.normalize()
     return joined
    def __init__(self, nfactors, T=1.0):
        super(ThreeRegularFactorGraph, self).__init__()

        factorNvariables = {i: [] for i in range(nfactors)}
        for i in range(nfactors):
            if i == 0:
                j = nfactors - 1
            else:
                j = i - 1

            self.add_variable(ijth_variable_name(i, j))
            factorNvariables[i].append(ijth_variable_name(i, j))
            factorNvariables[j].append(ijth_variable_name(i, j))

            if i < nfactors / 2:
                _, j = divmod(i + (nfactors / 2), nfactors)
                j = int(j)
                self.add_variable(ijth_variable_name(i, j))
                factorNvariables[i].append(ijth_variable_name(i, j))
                factorNvariables[j].append(ijth_variable_name(i, j))

        for i in range(nfactors):
            cardinality = [2 for j in range(len(factorNvariables[i]))]
            factor_value = np.exp(np.random.normal(0.0, T, cardinality))
            self.add_factor(
                Factor(ith_factor_name(i), factorNvariables[i], cardinality,
                       factor_value))
示例#11
0
    def sumout(self, f, var):
        '''
        Return new factor as marginalization of f on var
        Args:
         f: Factor() object
         var: variable in Markov Network
        '''
        tableSize = f.getTableSize() // self.cardinalities[var]
        newTable = [0] * tableSize
        newScope = f.getScope()
        newScope.remove(var)
        s = f.getStride(var)
        seen = set()
        assign = 0

        j = 0
        for i in range(tableSize):
            while True:
                while j in seen:
                    j += 1
                seen.add(j)
                newTable[i] += f.getTable()[j]
                assign += 1
                if assign == self.cardinalities[var]:
                    assign = 0
                    j -= (self.cardinalities[var] - 1) * s
                    break
                else:
                    j += s

        return Factor(newScope, newTable, self.cardinalities)
示例#12
0
def FactorSumProduct(F1, F2, variableList):
    """ Computes the sum-product of two factors w.r.t. the variables in variableList"""
    scope = list(
        set(F1.scope).union(set(F2.scope)).difference(set(variableList)))
    eDim = 1
    for var in variableList:
        eDim = eDim * var.num_states
    F = Factor(scope, defaultValue=0.0)
    j, k = 0, 0
    assignment = [0 for l in range(len(variableList) + len(scope))]
    for i in range(F.dimension):
        for _ in range(eDim):
            F.values[i] += F1.values[j] * F2.values[k]
            for l in range(len(variableList) + len(scope)):
                assignment[l] = assignment[l] + 1
                if l < len(variableList):
                    var = variableList[l]
                else:
                    var = scope[l - len(variableList)]
                if assignment[l] == var.num_states:
                    assignment[l] = 0
                    j = j - (var.num_states - 1) * F1.getStride(var)
                    k = k - (var.num_states - 1) * F2.getStride(var)
                else:
                    j = j + F1.getStride(var)
                    k = k + F2.getStride(var)
                    break
    return F
示例#13
0
    def instantiate(self, evidFile):
        '''
        Instantiate evidence. Reduce CPTs and factors
        '''
        with open(evidFile) as fname:
            lst = list(map(int, fname.readline().split()))
            for i in range(1, len(lst), 2):
                self.evid[lst[i]] = lst[i + 1]

        for i in range(len(self.factors)):
            for v in self.evid:
                if self.factors[i].contains(v):
                    s = self.factors[i].getStride(v)

                    tmpScope = self.factors[i].getScope()
                    tmpScope.remove(v)

                    tmpTable = []
                    for j in range(self.evid[v] * s,
                                   self.factors[i].getTableSize(),
                                   s * self.cardinalities[v]):
                        for k in range(j, j + s):
                            tmpTable.append(self.factors[i].getTable()[k])

                    self.factors[i] = Factor(tmpScope, tmpTable,
                                             self.cardinalities)
示例#14
0
    def read(self, inputFile):
        '''
        Read input file and populate information for the graphical model

        Args:
         inputFile: input UAI file 
        '''

        with open(inputFile) as fname:

            fname.readline()

            numVars = int(fname.readline())
            for i in range(numVars):
                self.variables.append(i)

            self.cardinalities = list(map(int, fname.readline().split()))

            self.numCliques = int(fname.readline())
            cliques = []
            for i in range(self.numCliques):
                cliques.append(list(map(int, fname.readline().split()))[1:])

            tables = []
            for i in range(self.numCliques):
                while (len(fname.readline()) <= 1):
                    continue
                # fname.readline()
                tables.append(list(map(float, fname.readline().split())))

            for i in range(self.numCliques):
                self.factors.append(
                    Factor(cliques[i], tables[i], self.cardinalities))
示例#15
0
    def product(self, f1, f2):
        '''
        Return product of 2 factors. Code reference from Box 10.A, pages 358-361 in Koller and Friedman
        Args:
         f1, f2: Factor() objects
        '''
        j, k = 0, 0
        assignment = {}
        tableSize = f1.getTableSize()

        for var in f1.getScope():
            assignment[var] = 0

        for var in f2.getScope():
            if not f1.contains(var):
                tableSize *= self.cardinalities[var]
                assignment[var] = 0

        newTable = [0] * tableSize

        for i in range(tableSize):
            newTable[i] = f1.getTable()[j] * f2.getTable()[k]
            for l in reversed(sorted(assignment.keys())):
                assignment[l] += 1
                if assignment[l] == self.cardinalities[l]:
                    assignment[l] = 0
                    j -= (self.cardinalities[l] - 1) * f1.getStride(l)
                    k -= (self.cardinalities[l] - 1) * f2.getStride(l)
                else:
                    j += f1.getStride(l)
                    k += f2.getStride(l)
                    break

        return Factor(list(sorted(assignment.keys())), newTable,
                      self.cardinalities)
 def belief(self, vName):
     self.cleanMessages()
     incoming_messages = []
     for fName in self.nodeVariables[vName].getNodeFactorNames():
         incoming_messages.append(self.msgFactorVariable(fName, vName))
     joined = Factor.joint(incoming_messages)
     #normalized =joined.normalize()
     return joined
示例#17
0
    def agregarUno(self, functions = None):
        if functions == None:
            functions = self.defaultListeners
            
        if self.unoMenos:
            self.digitos -= 1

        if(self.hided == 0):
            este = Factor(self.digitos, functions, self.count, self.inverso)
            if len(self.factores) != 0:
                este.MasListeners = self.factores[0].MasListeners
                este.MenosListeners = self.factores[0].MenosListeners
            self.count += 1
            self.factores.append(este)
            self.principal.pack_start(este.agregar, False, False, 0)
        else:
            self.factores[self.count - self.hided - self.correrIDs].agregar.show()
            self.hided -= 1
示例#18
0
def FactorProduct(F1, F2):
    """ Computes the product of two factors """
    scope = list(set(F1.scope).union(set(F2.scope)))
    F = Factor(scope)
    j, k = 0, 0
    assignment = [0 for l in range(len(scope))]
    for i in range(F.dimension):
        F.values[i] = F1.values[j] * F2.values[k]
        for l in range(len(scope)):
            assignment[l] = assignment[l] + 1
            if assignment[l] == scope[l].num_states:
                assignment[l] = 0
                j = j - (scope[l].num_states - 1) * F1.getStride(scope[l])
                k = k - (scope[l].num_states - 1) * F2.getStride(scope[l])
            else:
                j = j + F1.getStride(scope[l])
                k = k + F2.getStride(scope[l])
                break
    return F
示例#19
0
def FactorProduct(F1,F2):
    """ Computes the product of two factors """
    scope = list(set(F1.scope).union(set(F2.scope)))
    F = Factor(scope)
    j,k = 0,0
    assignment = [0 for l in range(len(scope))]
    for i in range(F.dimension):
        F.values[i] = F1.values[j] * F2.values[k]
        for l in range(len(scope)):
            assignment[l] = assignment[l] + 1
            if assignment[l] == scope[l].num_states:
                assignment[l] = 0
                j = j - (scope[l].num_states-1)*F1.getStride(scope[l])
                k = k - (scope[l].num_states-1)*F2.getStride(scope[l])
            else:
                j = j + F1.getStride(scope[l])
                k = k + F2.getStride(scope[l])
                break
    return F
示例#20
0
class Resta(Operacion):
    def __init__(self, functions, digitos=3):
        self.agregar = gtk.VBox()
        self.agregar.show()

        self.principal = gtk.VBox()
        self.principal.show()
        self.agregar.pack_start(self.principal, False, False)

        self.llevo = Factor(digitos, functions, -2)
        self.principal.pack_start(self.llevo.agregar, False, False)

        self.factores = Factores(2, digitos, functions, False)
        self.principal.pack_start(self.factores.agregar, False, False)

        self.igual = gtk.HBox()
        self.igual.show()
        self.linea = self.getLineaHor(500)
        self.igual.pack_end(self.linea, False, False)

        self.signo = gtk.Image()
        self.signo.set_from_file("./images/-.gif")
        self.signo.show()
        self.igual.pack_start(self.signo, False, False)

        self.principal.pack_start(self.igual, False, False)

        self.resultado = Factor(digitos + 1, functions, -1)
        self.principal.pack_start(self.resultado.agregar, False, False)

        self.tipo = 1

        self.extra = [self.llevo, self.resultado]

    def comprobar(self):
        pass

    def setZoom(self, valor):
        Operacion.setZoom(self, valor)
        if valor == 1:
            self.llevo.setSize("ss")
            self.llevo.digitos.agregar.set_spacing(0)
        elif valor == 2:
            self.llevo.setSize("ss")
            self.llevo.digitos.agregar.set_spacing(40)
        elif valor == 3:
            self.llevo.setSize("s")
            self.llevo.digitos.agregar.set_spacing(40)
        elif valor == 4:
            self.llevo.setSize("m")
            self.llevo.digitos.agregar.set_spacing(40)
 def buildMaxFactorVariable(self, fName, vName):
     incoming_messages = [self.nodeFactors[fName].getFactor()]
     marginalization_variables = []
     for vNameMeighbor in self.nodeFactors[fName].getVariableNames():
         if vNameMeighbor != vName:
             msg = self.msgMaxVariableFactor(vNameMeighbor, fName)
             incoming_messages.append(msg)
             marginalization_variables.append(vNameMeighbor)
     joined = Factor.joint(incoming_messages)
     maximized = joined.maximize(marginalization_variables)
     #normalized  =maximized.normalize()
     return maximized
示例#22
0
def main() -> None:
    if len(sys.argv) <= 1:
        print(
            'Usage: python main.py [1 or 2 for 2b part 1 and 2 respectively]')
        exit(-1)

    sim_to_run = sys.argv[1]

    factors = [
        Factor(['Trav'], [], [0.05, 0.95]),
        Factor(['Fraud'], ['Trav'], [0.01, 0.99, 0.004, 0.996]),
        Factor(['OC'], [], [0.7, 0.3]),
        Factor(['CRP'], ['OC'], [0.1, 0.9, 0.001, 0.999]),
        Factor(['FP'], ['Trav', 'Fraud'],
               [0.9, 0.1, 0.9, 0.1, 0.1, 0.9, 0.01, 0.99]),
        Factor(['IP'], ['OC', 'Fraud'],
               [0.02, 0.98, 0.01, 0.99, 0.011, 0.989, 0.001, 0.999])
    ]

    if sim_to_run == '1':
        inference(factors, ['Fraud'], ['Trav', 'FP', 'IP', 'OC', 'CRP'], [])
    else:
        inference(factors, ['Fraud'], ['Trav', 'OC'], [('FP', Sign.POSITIVE),
                                                       ('IP', Sign.NEGATIVE),
                                                       ('CRP', Sign.POSITIVE)])
示例#23
0
文件: akpu.py 项目: junkyul/kpu
def main(args):
    print "[Solve ID by local search]"
    N, M, K, T = int(args[1]), int(args[2]), int(args[3]), int(args[4])
    from Factor import Factor
    # sample network
    ChanceVars, DecVars, CPT, Strategy, Utility = sampleChainID(N, M)

    print "SPU"
    print
    sys.stdout.flush()
    SPUvalue, SPUit, SPUtime, SPUsize = run(ChanceVars, DecVars, CPT, Strategy,
                                            Utility, 1, False, 4 * N, False)

    print "Exact"
    print
    sys.stdout.flush()
    sol = len(DecVars) * [None]
    for n in range(len(DecVars)):
        sol[n] = Factor([DecVars[n]], defaultValue=1.0 / M)
    kPUvalue, kPUit, kPUtime, kPUsize = run(ChanceVars, DecVars, CPT, sol,
                                            Utility, K, True, 2 * N, False)

    print "Approximate"
    print
    sys.stdout.flush()
    sol2 = len(DecVars) * [None]
    for n in range(len(DecVars)):
        sol2[n] = Factor([DecVars[n]], defaultValue=1.0 / M)
    akPUvalue, akPUit, akPUtime, akPUsize = run(ChanceVars, DecVars, CPT, sol2,
                                                Utility, K, True, 2 * N, True,
                                                T)
    print
    print "METHOD     \tTIME(s)   \tMAX SIZE  \tVALUE"
    print "SPU        \t%10s\t%10s\t%g" % (str(SPUtime), str(SPUsize),
                                           SPUvalue)
    print "Exact      \t%10s\t%10s\t%g" % (str(kPUtime), str(kPUsize),
                                           kPUvalue)
    print "Approximate\t%10s\t%10s\t%g" % (str(akPUtime), str(akPUsize),
                                           akPUvalue)
示例#24
0
def FactorMaxBProduct(FactorList, variableList):
    """ Computes pairwise max-product of list of factors """
    F = FactorList.pop()
    if len(FactorList) == 0:
        Fp = Factor([], defaultValue=1.0)
        return FactorMaxProduct(F, Fp, variableList)

    while len(FactorList) > 1:
        Fp = FactorList.pop()
        F = FactorProduct(F, Fp)

    Fp = FactorList.pop()

    return FactorMaxProduct(F, Fp, variableList)
示例#25
0
def LogFactorSumBProduct(FactorList, variableList):
    """ Computes pairwise sum-product of list of factors specified in log-scale """
    F = FactorList.pop()
    if len(FactorList) == 0:
        Fp = Factor([], defaultValue=0.0)
        return LogFactorSumProduct(F, Fp, variableList)

    while len(FactorList) > 1:
        Fp = FactorList.pop()
        F = LogFactorProduct(F, Fp)

    Fp = FactorList.pop()

    return LogFactorSumProduct(F, Fp, variableList)
 def buildFactorVariable(self, fName, vName):
     incoming_messages = [self.nodeFactors[fName].getFactor()]
     marginalization_variables = []
     for vNameMeighbor in self.nodeFactors[fName].getVariableNames():
         if vNameMeighbor != vName:
             msg = self.msgVariableFactor(vNameMeighbor, fName)
             incoming_messages.append(msg)
             marginalization_variables.append(vNameMeighbor)
     joined = Factor.joint(incoming_messages)
     #This doesn't seem to work for evicences :-(
     reduced = self.reduce(joined, marginalization_variables + [vName])
     marginalized = reduced.marginalize(marginalization_variables)
     #normalized  =marginalized.normalize()
     return marginalized
示例#27
0
def sampleChainID(N,M):
    """ Sample a chain ID with N chance nodes and variable cardinalities M """
    from random import random
    ChanceVars = [ Variable('C'+str(i),M) for i in range(N) ]
    DecVars = [ Variable('D'+str(i),M) for i in range(N) ]
    CPT = N*[ None ]
    DecCPT = N*[ None ]
    CPT[0] = Factor( [ChanceVars[0],DecVars[0]] ) # P(C[0]|D[0])
    for offset in range(M):            
        # P(C[i]|C[i-1]=0,D[i]=0)
        CPT[0].values[M*offset:M*(offset+1)] = Dirichlet(M,M)
    for i in range(1,N):
        CPT[i] = Factor( [ChanceVars[i],ChanceVars[i-1],DecVars[i]] ) # P(C[i]|C[i-1],D[i])
        offset = 0
        for offset in range(M*M):
            # P(C[i]|C[i-1]=0,D[i]=0)
            CPT[i].values[M*offset:M*(offset+1)] = Dirichlet(M,M)
            offset+=1
    for i in range(N):
        DecCPT[i] = Factor([DecVars[i]], defaultValue=1.0/M)
    U = Factor([ ChanceVars[N-1] ])
    for i in range(M):
        U.values[i] = random()
    return ChanceVars, DecVars, CPT, DecCPT, U
示例#28
0
    def __init__(self, functions, factores=3, digitos=3, correrIDs=0):
        self.agregar = Gtk.HBox()
        self.agregar.show()

        self.principal = Gtk.VBox(False, 0)
        self.principal.show()
        self.agregar.pack_end(self.principal, True, True, 0)

        self.llevo = Factor(digitos, functions, -2)
        self.principal.pack_start(self.llevo.agregar, False, False, 0)

        self.factores = Factores(factores,
                                 digitos,
                                 functions,
                                 True,
                                 correrIDs=correrIDs)
        self.principal.pack_start(self.factores.agregar, False, False, 0)

        self.igual = Gtk.HBox()
        self.igual.show()
        self.linea = self.getLineaHor(500)
        self.igual.pack_end(self.linea, False, False, 0)

        self.signo = Gtk.Image()
        self.signo.set_from_file("./images/+.gif")
        self.signo.show()
        self.igual.pack_start(self.signo, True, True, 0)

        self.principal.pack_start(self.igual, False, True, 10)

        self.resultado = Factor(digitos + 1, functions, -1)
        self.principal.pack_start(self.resultado.agregar, False, False, 0)

        self.tipo = 0

        self.extra = [self.llevo, self.resultado]
示例#29
0
def LogFactorSumProduct(F1, F2, variableList):
    """ Computes the sum-product of two factors specified in log-scale """
    scope = list(
        set(F1.scope).union(set(F2.scope)).difference(set(variableList)))
    eDim = 1
    for var in variableList:
        eDim = eDim * var.num_states
    F = Factor(scope, defaultValue=0.0)
    j, k = 0, 0
    c1 = max(F1.values)
    c2 = max(F2.values)
    c = max(c1, c2)
    assignment = [0 for l in range(len(variableList) + len(scope))]
    for i in range(F.dimension):
        for _ in range(eDim):
            F.values[i] += exp(F1.values[j] + F2.values[k] - c)
            for l in range(len(variableList) + len(scope)):
                assignment[l] = assignment[l] + 1
                if l < len(variableList):
                    var = variableList[l]
                else:
                    var = scope[l - len(variableList)]
                if assignment[l] == var.num_states:
                    assignment[l] = 0
                    j = j - (var.num_states - 1) * F1.getStride(var)
                    k = k - (var.num_states - 1) * F2.getStride(var)
                else:
                    j = j + F1.getStride(var)
                    k = k + F2.getStride(var)
                    break
    for k in range(F.dimension):
        try:
            F.values[k] = log(F.values[k]) + c
        except ValueError:
            F.values[k] = LOGZERO
    return F
    def __init__(self, nfactors):
        super(CompleteFactorGraph, self).__init__()

        factorNvariables = {i: [] for i in range(nfactors)}
        for i in range(nfactors):
            for j in range(i + 1, nfactors):
                self.add_variable(ijth_variable_name(i, j))
                factorNvariables[i].append(ijth_variable_name(i, j))
                factorNvariables[j].append(ijth_variable_name(i, j))

        for i in range(nfactors):
            cardinality = [2 for j in range(nfactors - 1)]
            factor_value = np.random.random(cardinality)
            self.add_factor(
                Factor(ith_factor_name(i), factorNvariables[i], cardinality,
                       factor_value))
示例#31
0
def var_elimination(factor_list: List[Factor], query_variables: List[str],
                    ordered_list_of_hidden_variables: List[str],
                    evidence_list: List[Tuple[str, Sign]]):
    """
    Calculate P(factor_list | evidence_list) using variable elimination, after
    all of the evidence is observed

    :param factor_list: List of the factors we'll use
    :param query_variables: We want to find this variables' probability
    :param ordered_list_of_hidden_variables: The order to sumout variables not in query_variables or evidence_list
    :param evidence_list: List of variables that we know the values of
    """
    for var in ordered_list_of_hidden_variables:
        # find out which factors contain var, remove them from factor_list
        factors_to_multiply = []
        for factor in factor_list[:]:
            if var in factor.variables:
                factor_list.remove(factor)
                factors_to_multiply.append(factor)

        # multiply all the removed factors together, then sumout var
        joined_factor = factors_to_multiply[0]
        for i in range(1, len(factors_to_multiply)):
            joined_factor = Factor.multiply(joined_factor,
                                            factors_to_multiply[i])
        joined_factor.sumout(var)

        if len(joined_factor.solution_variables) > 0:
            factor_list.append(joined_factor)
        print('After eliminating {0}:'.format(var))
        print_all_factors(factor_list)

    # multiply remaining factors together
    joined_factor = factor_list[0]
    for i in range(1, len(factor_list)):
        joined_factor = Factor.multiply(joined_factor, factor_list[i])

    joined_factor.normalize()

    final_factor = Factor(query_variables, [], joined_factor.table[:, -1], [],
                          evidence_list)
    print('Solution:')
    final_factor.print_representation()
    final_factor.print_factor()
示例#32
0
def inference_by_enumeration(factor_list: List[Factor],
                             ordered_list_of_hidden_variables: List[str]):
    """
    Calculate P(factor_list | evidence_list) using inference by enumeration, after
    all of the evidence is observed
    This function is unused when doing inference

    :param factor_list: List of the factors we'll use
    :param ordered_list_of_hidden_variables: The order to sumout variables not in query_variables or evidence_list
    """
    joined_factor = factor_list[0]
    for i in range(1, len(factor_list)):
        joined_factor = Factor.multiply(joined_factor, factor_list[i])
    for var in ordered_list_of_hidden_variables:
        joined_factor.sumout(var)
    joined_factor.normalize()
    joined_factor.print_factor()
def PohligHellman(g, a, p):
    # Factor p-1 into q1, .. qi
    Q = []  # small primes
    Q = Factor(p - 1)

    # Find Ni = (p - 1) / qi
    N = []
    for i in range(0, len(Q)):
        N.append((p - 1) / Q[i])

    # Compute g^(Ni * x) = h^(Ni) mod p
    X = []
    for i in range(0, len(Q)):
        X.append(findExp((g**N[i]) % p, (a**N[i]) % p, p))

    # Use CRT to find x
    x = ChineseRemainderTheorem(X, Q)

    return x
示例#34
0
文件: bn2limid.py 项目: denismaua/kpu
def main(args):
    logScale = False # Use log-scale
    #print "[Compute all marginals by Variable Elimination]"
    start = time.clock()
    print "[Covnert BN into LIMID]"
    print "loading model from file", args[1], "...",
    sys.stdout.flush()
    stime = time.clock()
    Variables, Factors = read_network_from_file(args[1], useLog=logScale)
    etime = time.clock() - stime
    print "done: %d variables, %d factors. \033[91m[%gs]\033[0m" % (len(Variables), len(Factors), etime)
    pa = {}
    ch = {}
    root = set()
    leaf = set()
    for v in Variables:
        ch[v] = set()
        pa[v] = []
    for f in Factors:
        pa[f.scope[-1]] = f.scope[:-1]
        for v in f.scope[:-1]:
            ch[v].add(f.scope[-1])    
    for v in Variables:
        if len(ch[v]) == 0:
            leaf.add(v)
        if len(pa[v]) == 0:
            root.add(v)
    print '#Leaves:', len(leaf)
    print '#Root:', len(root)
    
    print "building domain graph...",
    sys.stdout.flush()
    stime = time.clock()	
    dGraph = BuildDomainGraph(Factors, Variables)    
    etime = time.clock() - stime
    print "done. \033[91m[%gs]\033[0m" % etime	
    print "computing MMD lower bound on treewidth...",
    sys.stdout.flush()
    stime = time.clock()	
    mmd = ComputeLowerBound(dGraph)
    etime = time.clock() - stime
    print "done. \033[91m[%gs]\033[0m" % etime	
    print "applying safe reduction rules...",
    sys.stdout.flush()
    stime = time.clock()
    Prefix, low = FindPrefix(dGraph, low=mmd)
    etime = time.clock() - stime
    print "done. \033[91m[%gs]\033[0m" % etime	
    print "Optimal Prefix Length:", len(Prefix)
    print "computing min-fill ordering...",
    sys.stdout.flush()
    stime = time.clock()	
    #OrderedVariables, tw = FindOrder(dGraph)
    OrderedVariables, tw = FindOrder(dGraph, Prefix=Prefix, treewidth=low)
    etime = time.clock() - stime
    print "done. \033[91m[%gs]\033[0m" % etime
    
    print "Min-Fill Elimination order:", 
    for var in OrderedVariables:
        print var.label,
    print
    
    print "Treewidth:", tw
    dGraph, Prefix = None, None # dump graph
    prev = None
    i = 0
    for v in reversed(OrderedVariables):
        if v in leaf:
            i += 1
            #print i, ':', v.label
            w = Variable("W"+v.label[1:],2)
            f = Factor([v,w])
            util = [ random() for _ in range(v.num_states) ]
            f.values = util + [1-u for u in util]
            #f.printOut()
            Variables.append(w)
            Factors.append(f)
            o = Variable("O"+v.label[1:],2)
            Variables.append(o)
            if prev == None:
                g = Factor([w,o])
                g.values = [1.0, 0.0, 0.0, 1.0]
                Factors.append(g)
            else:
                g = Factor([w,prev,o])
                g.values = [1.0, 1.0-1.0/i, 1.0/i, 0.0, 0.0, 1.0/i, 1.0-1.0/i, 1.0]
                Factors.append(g)
            #g.printOut()
            prev = o
            #print
    V = Variable("V",1)
    U = Factor([prev,V])
    U.values = [float(i), 0.0]
    #U.printOut()
    #Factors.append(u)
    print
    # TO-DO: save to file in LIMID format and pickle dump
    out = open( args[2], "w" )
    out.write("LIMID\n" + str(len(Variables)-len(root)) + " " + str(len(root)) + " 1\n")
    v_id = {}
    i = 0
    for var in Variables:
        if var not in root:
            v_id[var.id] = i
            out.write(str(var.cardinality) + " ")
            print var.label, v_id[var.id]
            i += 1
    out.write("\n")
    for var in root:
        v_id[var.id] = i            
        out.write(str(var.cardinality) + " ")
        print var.label, v_id[var.id]
        i += 1
    out.write("\n")
    for j,var in enumerate(Variables):
        if var not in root:
            out.write(str(len(Factors[j].scope)-1) + " ")
            for pa in reversed(Factors[j].scope[:-1]):
                out.write(str(v_id[pa.id]) + " ")
            out.write("\n")
    for var in root:
        out.write("0\n")
    out.write("1 " + str(v_id[U.scope[0].id])+ "\n")

    for i,var in enumerate(Variables):
        if var not in root:
            out.write( str(len(Factors[i].values)) + "\n")
            s = Factors[i].scope
            c = len(s)*[0]
            for _ in range(Factors[i].dimension):
                out.write(" "+ str(Factors[i].getValue(c)))
                for l in reversed(range(len(c))):
                    c[l] += 1
                    if c[l] == s[l].num_states:
                        c[l] = 0
                    else:
                        break
            out.write(" \n")
    out.write( str(len(U.values)) + "\n")
    for val in U.values:
        out.write( " " + str(val))
    out.write(" \n")            
    out.close()

    
    
    ## print "running variable elimination..."	
    ## stime = time.clock()	
    ## Z, tw, wtw, mem = VariableElimination(Factors, OrderedVariables)
    ## etime = time.clock() - stime
    ## print "done. \033[91m[%gs]\033[0m" % etime
    ## Z.printOut()
    print "Elapsed time: \033[91m%gs\033[0m" % (time.clock()-start)