def train_model(config, dataroot, augment, cv_ratio_test, cv_fold, save_path=None, skip_exist=False): C.get() C.get().conf = config C.get()['aug'] = augment result = train_and_eval(None, dataroot, cv_ratio_test, cv_fold, save_path=save_path, only_eval=skip_exist) return C.get()['model']['type'], cv_fold, result
def train_model(config, dataloaders, dataroot, augment, cv_ratio_test, cv_id, save_path=None, skip_exist=False, evaluation_interval=5, gr_assign=None, gr_dist=None): C.get() C.get().conf = config C.get()['aug'] = augment result = train_and_eval(None, dataloaders, dataroot, cv_ratio_test, cv_id, save_path=save_path, only_eval=skip_exist, evaluation_interval=evaluation_interval, gr_assign=gr_assign, gr_dist=gr_dist) return C.get()['model']['type'], cv_id, result
def train_model( config, dataroot, augment, cv_ratio_test, cv_fold, save_path=None, skip_exist=False ): C.get() C.get().conf = config C.get()["aug"] = augment # pass the get_dataloaders and num_class instead being imported in the train.py. In this way, these two functions # can be monkey-patched. result = train_and_eval( "search_stage", None, dataroot, cv_ratio_test, cv_fold, save_path=save_path, only_eval=skip_exist, get_dataloaders=get_dataloaders, num_class=num_class, get_model=get_model, ) return C.get()["model"]["type"], cv_fold, result