def build_correct_setup(): search_space = search_spaces.TextClassifierSearchSpace() search_strategy = search_strategies.RandomSearch() search_space.add_budget(param.Budget.GENERATIONS, 10) search_space.add_evaluation_metric(param.EvaluationMetric.MICRO_F1_SCORE) search_space.add_optimization_value(param.OptimizationValue.DEV_SCORE) search_space.add_parameter(param.ModelTrainer.LEARNING_RATE, options=[0.01, 0.05, 0.1]) search_space.add_parameter(param.DocumentRNNEmbeddings.HIDDEN_SIZE, options=[128, 256, 512]) search_space.add_parameter(param.DocumentRNNEmbeddings.WORD_EMBEDDINGS, options=[['glove'], ['en'], ['en', 'glove']]) return search_space, search_strategy
from FlairParamOptimizer import search_strategies, search_spaces, orchestrator import FlairParamOptimizer.parameter_listings.parameters_for_user_input as param from flair.embeddings import WordEmbeddings from flair.datasets import WNUT_17 corpus = WNUT_17() search_space = search_spaces.SequenceTaggerSearchSpace() search_strategy = search_strategies.RandomSearch() search_space.add_tag_type("ner") search_space.add_budget(param.Budget.TIME_IN_H, 24) search_space.add_evaluation_metric(param.EvaluationMetric.MICRO_F1_SCORE) search_space.add_optimization_value(param.OptimizationValue.DEV_SCORE) search_space.add_max_epochs_per_training_run(25) search_space.add_parameter(param.SequenceTagger.HIDDEN_SIZE, options=[128, 256, 512]) search_space.add_parameter(param.SequenceTagger.DROPOUT, options=[0, 0.1, 0.2, 0.3]) search_space.add_parameter(param.SequenceTagger.WORD_DROPOUT, options=[0, 0.01, 0.05, 0.1]) search_space.add_parameter(param.SequenceTagger.RNN_LAYERS, options=[2, 3, 4, 5, 6]) search_space.add_parameter(param.SequenceTagger.USE_RNN, options=[True, False]) search_space.add_parameter(param.SequenceTagger.USE_CRF, options=[True, False]) search_space.add_parameter(param.SequenceTagger.REPROJECT_EMBEDDINGS, options=[True, False]) search_space.add_parameter(