def createPhia(runTime, mesh, Ua):
    ref.ext_Info() << "Reading/calculating face flux field phia\n" << ref.nl

    phia = man.surfaceScalarField(
        man.IOobject(ref.word("phia"), ref.fileName(runTime.timeName()), mesh,
                     ref.IOobject.READ_IF_PRESENT, ref.IOobject.AUTO_WRITE),
        man.surfaceScalarField(
            ref.linearInterpolate(Ua) & mesh.Sf(), man.Deps(Ua, mesh)))

    return phia
示例#2
0
def _createFields(runTime, mesh):
    # Load boundary condition
    from BCs import rho

    ref.ext_Info() << "Reading thermophysical properties\n" << ref.nl
    thermo = man.basicPsiThermo.New(mesh)

    p = man.volScalarField(thermo.p(), man.Deps(thermo))
    e = man.volScalarField(thermo.e(), man.Deps(thermo))
    T = man.volScalarField(thermo.T(), man.Deps(thermo))
    psi = man.volScalarField(thermo.psi(), man.Deps(thermo))
    mu = man.volScalarField(thermo.mu(), man.Deps(thermo))

    inviscid = True
    if mu.internalField().max() > 0.0:
        inviscid = False
        pass

    ref.ext_Info() << "Reading field U\n" << ref.nl
    U = man.volVectorField(
        man.IOobject(ref.word("U"), ref.fileName(runTime.timeName()), mesh,
                     ref.IOobject.MUST_READ, ref.IOobject.AUTO_WRITE), mesh)

    pbf, rhoBoundaryTypes = _rhoBoundaryTypes(p)

    rho = man.volScalarField(
        man.IOobject(ref.word("rho"), ref.fileName(runTime.timeName()), mesh,
                     ref.IOobject.NO_READ, ref.IOobject.AUTO_WRITE),
        man.volScalarField(thermo.rho(), man.Deps(thermo)), rhoBoundaryTypes)
    rhoU = man.volVectorField(
        man.IOobject(ref.word("rhoU"), ref.fileName(runTime.timeName()), mesh,
                     ref.IOobject.NO_READ, ref.IOobject.NO_WRITE), rho * U)
    rhoE = man.volScalarField(
        man.IOobject(ref.word("rhoE"), ref.fileName(runTime.timeName()), mesh,
                     ref.IOobject.NO_READ, ref.IOobject.NO_WRITE),
        rho * (e + man.volScalarField(0.5 * U.magSqr(), man.Deps(U))))

    pos = man.surfaceScalarField(
        man.IOobject(ref.word("pos"), ref.fileName(runTime.timeName()), mesh),
        mesh, ref.dimensionedScalar(ref.word("pos"), ref.dimless, 1.0))

    neg = man.surfaceScalarField(
        man.IOobject(ref.word("neg"), ref.fileName(runTime.timeName()), mesh),
        mesh, ref.dimensionedScalar(ref.word("neg"), ref.dimless, -1.0))

    phi = man.surfaceScalarField(
        ref.word("phi"),
        man.surfaceVectorField(mesh.Sf(), man.Deps(mesh))
        & man.fvc.interpolate(rhoU))

    ref.ext_Info() << "Creating turbulence model\n" << ref.nl
    turbulence = man.compressible.turbulenceModel.New(rho, U, phi, thermo)

    return thermo, p, e, T, psi, mu, U, pbf, rhoBoundaryTypes, rho, rhoU, rhoE, pos, neg, inviscid, phi, turbulence
示例#3
0
def createFields(runTime, mesh, g):
    ref.ext_Info() << "Reading thermophysical properties\n" << ref.nl

    pThermo = man.basicRhoThermo.New(mesh)

    rho = man.volScalarField(
        man.IOobject(
            ref.word("rho"), ref.fileName(runTime.timeName()), mesh, ref.IOobject.NO_READ, ref.IOobject.NO_WRITE
        ),
        man.volScalarField(pThermo.rho(), man.Deps(pThermo)),
    )

    p = man.volScalarField(pThermo.p(), man.Deps(pThermo))
    h = man.volScalarField(pThermo.h(), man.Deps(pThermo))
    psi = man.volScalarField(pThermo.psi(), man.Deps(pThermo))

    ref.ext_Info() << "Reading field U\n" << ref.nl
    U = man.volVectorField(
        man.IOobject(
            ref.word("U"), ref.fileName(runTime.timeName()), mesh, ref.IOobject.MUST_READ, ref.IOobject.AUTO_WRITE
        ),
        mesh,
    )

    phi = man.compressibleCreatePhi(runTime, mesh, U, rho)

    ref.ext_Info() << "Creating turbulence model\n" << ref.nl
    turbulence = man.compressible.turbulenceModel.New(rho, U, phi, pThermo)

    ref.ext_Info() << "Calculating field g.h\n" << ref.nl
    gh = man.volScalarField(ref.word("gh"), man.volScalarField(g & mesh.C(), man.Deps(mesh)))
    ghf = man.surfaceScalarField(ref.word("ghf"), man.surfaceScalarField(g & mesh.Cf(), man.Deps(mesh)))

    ref.ext_Info() << "Reading field p_rgh\n" << ref.nl
    p_rgh = man.volScalarField(
        man.IOobject(
            ref.word("p_rgh"), ref.fileName(runTime.timeName()), mesh, ref.IOobject.MUST_READ, ref.IOobject.AUTO_WRITE
        ),
        mesh,
    )

    # Force p_rgh to be consistent with p
    p_rgh << p - rho * gh

    ref.ext_Info() << "Creating field DpDt\n" << ref.nl

    DpDt = man.volScalarField(
        ref.word("DpDt"), man.fvc.DDt(man.surfaceScalarField(ref.word("phiU"), phi / man.fvc.interpolate(rho)), p)
    )

    return pThermo, p, rho, h, psi, U, phi, turbulence, gh, ghf, p_rgh, DpDt
示例#4
0
def fun_UEqn( mesh, U, p_rgh, ghf, rho, rhoPhi, turbulence, twoPhaseProperties, pimple ):
    muEff = man.surfaceScalarField( ref.word( "muEff" ),
                                    man.surfaceScalarField( twoPhaseProperties.muf(), man.Deps( twoPhaseProperties ) )
                                    + man.fvc.interpolate( rho * man.volScalarField( turbulence.ext_nut(), man.Deps( turbulence ) ) ) )

    UEqn = man.fvm.ddt( rho, U ) + man.fvm.div( rhoPhi, U ) - man.fvm.laplacian( muEff, U ) - ( man.fvc.grad( U ) & man.fvc.grad( muEff ) )

    UEqn.relax()
        
    if pimple.momentumPredictor():
        ref.solve( UEqn  == ref.fvc.reconstruct( ( - ghf * ref.fvc.snGrad( rho ) - ref.fvc.snGrad( p_rgh ) ) * mesh.magSf() ) )
        pass

    return UEqn
示例#5
0
def _createFields( runTime, mesh ):
    
    ref.ext_Info() << "Reading field p\n" << ref.nl
    p = man.volScalarField( man.IOobject( ref.word( "p" ),
                                          ref.fileName( runTime.timeName() ),
                                          mesh,
                                          ref.IOobject.MUST_READ,
                                          ref.IOobject.AUTO_WRITE ),
                            mesh )
    
    ref.ext_Info() << "Reading field Urel\n" << ref.nl

    Urel = man.volVectorField( man.IOobject( ref.word( "Urel" ),
                                             ref.fileName( runTime.timeName() ),
                                             mesh,
                                             ref.IOobject.MUST_READ,
                                             ref.IOobject.AUTO_WRITE ),
                               mesh )
  
    ref.ext_Info() << "Reading/calculating face flux field phi\n" << ref.nl
    phi = man.surfaceScalarField( man.IOobject( ref.word( "phi" ),
                                                ref.fileName( runTime.timeName() ),
                                                mesh,
                                                ref.IOobject.READ_IF_PRESENT,
                                                ref.IOobject.AUTO_WRITE ), 
                                  man.surfaceScalarField( ref.linearInterpolate( Urel ) & mesh.Sf(), man.Deps( mesh, Urel ) ) )
    
    pRefCell = 0
    pRefValue = 0.0
    
    pRefCell, pRefValue = ref.setRefCell( p, mesh.solutionDict().subDict( ref.word( "PIMPLE" ) ), pRefCell, pRefValue )
    
    laminarTransport = man.singlePhaseTransportModel( Urel, phi )
    
    turbulence = man.incompressible.turbulenceModel.New( Urel, phi, laminarTransport )
    
    ref.ext_Info() << "Creating SRF model\n" << ref.nl
    SRF = man.SRF.SRFModel.New( Urel ) 
    
    sources = man.IObasicSourceList( mesh )
    
    # Create the absolute velocity
    U = man.volVectorField( man.IOobject( ref.word( "U" ),
                                          ref.fileName( runTime.timeName() ),
                                          mesh,
                                          ref.IOobject.NO_READ,
                                          ref.IOobject.AUTO_WRITE ),
                            man.volVectorField( Urel() + SRF.U(), man.Deps( Urel, SRF ) ) ) # mixed  calculations

    return p, U, Urel, SRF, phi, turbulence, pRefCell, pRefValue, laminarTransport, sources
def createPhia(runTime, mesh, Ua):
    ref.ext_Info() << "Reading/calculating face flux field phia\n" << ref.nl

    phia = man.surfaceScalarField(
        man.IOobject(
            ref.word("phia"),
            ref.fileName(runTime.timeName()),
            mesh,
            ref.IOobject.READ_IF_PRESENT,
            ref.IOobject.AUTO_WRITE,
        ),
        man.surfaceScalarField(ref.linearInterpolate(Ua) & mesh.Sf(), man.Deps(Ua, mesh)),
    )

    return phia
示例#7
0
def _createFields(runTime, mesh, potentialFlow, args):

    ref.ext_Info() << "Reading field p\n" << ref.nl
    p = man.volScalarField(
        man.IOobject(ref.word("p"), ref.fileName(runTime.timeName()), mesh,
                     ref.IOobject.MUST_READ, ref.IOobject.NO_WRITE), mesh)

    p << ref.dimensionedScalar(ref.word("zero"), p.dimensions(), 0.0)

    ref.ext_Info() << "Reading field U\n" << ref.nl
    U = man.volVectorField(
        man.IOobject(ref.word("U"), ref.fileName(runTime.timeName()), mesh,
                     ref.IOobject.MUST_READ, ref.IOobject.AUTO_WRITE), mesh)

    U << ref.dimensionedVector(ref.word("0"), U.dimensions(), ref.vector.zero)

    phi = man.surfaceScalarField(
        man.IOobject(ref.word("phi"), ref.fileName(runTime.timeName()), mesh,
                     ref.IOobject.NO_READ, ref.IOobject.AUTO_WRITE),
        man.fvc.interpolate(U)
        & man.surfaceVectorField(mesh.Sf(), man.Deps(mesh)))

    if args.optionFound(ref.word("initialiseUBCs")):
        U.correctBoundaryConditions()
        phi << (ref.fvc.interpolate(U) & mesh.Sf())
        pass

    pRefCell = 0
    pRefValue = 0.0

    pRefCell, pRefValue = ref.setRefCell(p, potentialFlow, pRefCell, pRefValue)

    return p, U, phi, pRefCell, pRefValue
示例#8
0
def _createFields(runTime, mesh, potentialFlow):

    ref.ext_Info() << "Reading field p\n" << ref.nl
    p = man.volScalarField(
        man.IOobject(
            ref.word("p"), ref.fileName(runTime.timeName()), mesh, ref.IOobject.MUST_READ, ref.IOobject.NO_WRITE
        ),
        mesh,
    )

    p << ref.dimensionedScalar(ref.word("zero"), p.dimensions(), 0.0)

    ref.ext_Info() << "Reading field U\n" << ref.nl
    U = man.volVectorField(
        man.IOobject(
            ref.word("U"), ref.fileName(runTime.timeName()), mesh, ref.IOobject.MUST_READ, ref.IOobject.AUTO_WRITE
        ),
        mesh,
    )

    U << ref.dimensionedVector(ref.word("0"), U.dimensions(), ref.vector.zero)

    phi = man.surfaceScalarField(
        man.IOobject(
            ref.word("phi"), ref.fileName(runTime.timeName()), mesh, ref.IOobject.NO_READ, ref.IOobject.AUTO_WRITE
        ),
        man.fvc.interpolate(U) & man.surfaceVectorField(mesh.Sf(), man.Deps(mesh)),
    )

    pRefCell = 0
    pRefValue = 0.0

    pRefCell, pRefValue = ref.setRefCell(p, potentialFlow, pRefCell, pRefValue)

    return p, U, phi, pRefCell, pRefValue
示例#9
0
def _createFields(runTime, mesh):

    ref.ext_Info() << "Reading field U\n" << ref.nl
    U = man.volVectorField(
        man.IOobject(ref.word("U"), ref.fileName(runTime.timeName()), mesh,
                     ref.IOobject.MUST_READ, ref.IOobject.AUTO_WRITE), mesh)

    ref.ext_Info() << "Creating face flux\n" << ref.nl
    phi = man.surfaceScalarField(
        man.IOobject(ref.word("phi"), ref.fileName(runTime.timeName()), mesh,
                     ref.IOobject.NO_READ, ref.IOobject.NO_WRITE), mesh,
        ref.dimensionedScalar(ref.word("zero"),
                              mesh.Sf().dimensions() * U.dimensions(), 0.0))

    laminarTransport = man.singlePhaseTransportModel(U, phi)

    turbulence = man.incompressible.RASModel.New(U, phi, laminarTransport)

    transportProperties = man.IOdictionary(
        man.IOobject(ref.word("transportProperties"),
                     ref.fileName(runTime.constant()), mesh,
                     ref.IOobject.MUST_READ, ref.IOobject.NO_WRITE))
    Ubar = ref.dimensionedVector(transportProperties.lookup(ref.word("Ubar")))

    flowDirection = (Ubar / Ubar.mag()).ext_value()
    flowMask = flowDirection.sqr()

    gradP = ref.dimensionedVector(ref.word("gradP"),
                                  ref.dimensionSet(0.0, 1.0, -2.0, 0.0, 0.0),
                                  ref.vector(0.0, 0.0, 0.0))

    return U, phi, laminarTransport, turbulence, Ubar, gradP, flowDirection, flowMask
示例#10
0
def createFields(runTime, mesh, g):
    ref.ext_Info() << "Reading thermophysical properties\n" << ref.nl

    pThermo = man.basicRhoThermo.New(mesh)

    rho = man.volScalarField(
        man.IOobject(ref.word("rho"), ref.fileName(runTime.timeName()), mesh,
                     ref.IOobject.NO_READ, ref.IOobject.NO_WRITE),
        man.volScalarField(pThermo.rho(), man.Deps(pThermo)))

    p = man.volScalarField(pThermo.p(), man.Deps(pThermo))
    h = man.volScalarField(pThermo.h(), man.Deps(pThermo))
    psi = man.volScalarField(pThermo.psi(), man.Deps(pThermo))

    ref.ext_Info() << "Reading field U\n" << ref.nl
    U = man.volVectorField(
        man.IOobject(ref.word("U"), ref.fileName(runTime.timeName()), mesh,
                     ref.IOobject.MUST_READ, ref.IOobject.AUTO_WRITE), mesh)

    phi = man.compressibleCreatePhi(runTime, mesh, U, rho)

    ref.ext_Info() << "Creating turbulence model\n" << ref.nl
    turbulence = man.compressible.turbulenceModel.New(rho, U, phi, pThermo)

    ref.ext_Info() << "Calculating field g.h\n" << ref.nl
    gh = man.volScalarField(ref.word("gh"),
                            man.volScalarField(g & mesh.C(), man.Deps(mesh)))
    ghf = man.surfaceScalarField(
        ref.word("ghf"), man.surfaceScalarField(g & mesh.Cf(), man.Deps(mesh)))

    ref.ext_Info() << "Reading field p_rgh\n" << ref.nl
    p_rgh = man.volScalarField(
        man.IOobject(ref.word("p_rgh"), ref.fileName(runTime.timeName()), mesh,
                     ref.IOobject.MUST_READ, ref.IOobject.AUTO_WRITE), mesh)

    # Force p_rgh to be consistent with p
    p_rgh << p - rho * gh

    ref.ext_Info() << "Creating field DpDt\n" << ref.nl

    DpDt = man.volScalarField(
        ref.word("DpDt"),
        man.fvc.DDt(
            man.surfaceScalarField(ref.word("phiU"),
                                   phi / man.fvc.interpolate(rho)), p))

    return pThermo, p, rho, h, psi, U, phi, turbulence, gh, ghf, p_rgh, DpDt
示例#11
0
def fun_Ueqn( simple, mesh, rho, U, phi, turbulence, ghf, p_rgh ):
    UEqn = man.fvm.div( phi, U ) + man( turbulence.divDevRhoReff( U ), man.Deps( turbulence, U) )
    UEqn.relax()
 
    if simple.momentumPredictor():
     ref.solve( UEqn == man.fvc.reconstruct( ( ( - ghf * man.fvc.snGrad( rho ) - man.fvc.snGrad( p_rgh ) )
                                               * man.surfaceScalarField( mesh.magSf(), man.Deps( mesh ) ) ) ) )

    return UEqn
示例#12
0
def createPhi( runTime, hU, mesh ):

    ref.ext_Info() << "Reading/calculating face flux field phi\n" << ref.nl
    
    phi = man.surfaceScalarField( man.IOobject( ref.word( "phi" ),
                                                ref.fileName( runTime.timeName() ),
                                                mesh,
                                                ref.IOobject.READ_IF_PRESENT,
                                                ref.IOobject.AUTO_WRITE ),
                                  man.linearInterpolate( hU ) & man.surfaceVectorField( mesh.Sf(), man.Deps( mesh ) ) )
    return phi
def createFields( runTime, mesh, g ):
    
    ref.ext_Info() << "Reading thermophysical properties\n" << ref.nl
    
    pThermo = man.basicPsiThermo.New( mesh );

    rho = man.volScalarField( man.IOobject( ref.word( "rho" ), 
                                            ref.fileName( runTime.timeName() ),
                                            mesh, 
                                            ref.IOobject.NO_READ, 
                                            ref.IOobject.NO_WRITE ),
                              man( pThermo.rho(), man.Deps( pThermo ) ) );
    
    p = man( pThermo.p(), man.Deps( pThermo ) )
    h = man( pThermo.h(), man.Deps( pThermo ) )
    psi = man( pThermo.psi(), man.Deps( pThermo ) )
    
    ref.ext_Info() << "Reading field U\n" << ref.nl
    U = man.volVectorField( man.IOobject( ref.word( "U" ),
                                          ref.fileName( runTime.timeName() ),
                                          mesh,
                                          ref.IOobject.MUST_READ,
                                          ref.IOobject.AUTO_WRITE ),
                              mesh )
    
    phi = man.compressibleCreatePhi( runTime, mesh, rho, U );

    ref.ext_Info() << "Creating turbulence model\n" << ref.nl
    turbulence = man.compressible.RASModel.New( rho, U,  phi, pThermo );

    ref.ext_Info()<< "Calculating field g.h\n" << ref.nl
    
    gh = man.volScalarField( ref.word( "gh" ), man( g & mesh.C(), man.Deps( mesh ) ) )
    ghf = man.surfaceScalarField( ref.word( "ghf" ), man( g & mesh.Cf(), man.Deps( mesh ) ) )
    
    ref.ext_Info() << "Reading field p_rgh\n" << ref.nl
    p_rgh = man.volScalarField( man.IOobject( ref.word( "p_rgh" ),
                                              ref.fileName( runTime.timeName() ),
                                              mesh,
                                              ref.IOobject.MUST_READ,
                                              ref.IOobject.AUTO_WRITE ),
                                mesh );
    # Force p_rgh to be consistent with p
    p_rgh << p - rho * gh
    
    pRefCell = 0
    pRefValue = 0.0
    
    pRefCell, pRefValue = ref.setRefCell( p, p_rgh, mesh.solutionDict().subDict( ref.word( "SIMPLE" ) ), pRefCell, pRefValue );

    initialMass = ref.fvc.domainIntegrate( rho )
    totalVolume = mesh.V().ext_sum()
    
    return pThermo, rho, p, h, psi, U, phi, turbulence, gh, ghf, p_rgh, pRefCell, pRefValue, initialMass, totalVolume
示例#14
0
def fun_Ueqn(simple, mesh, rho, U, phi, turbulence, ghf, p_rgh):
    UEqn = man.fvm.div(phi, U) + man(turbulence.divDevRhoReff(U),
                                     man.Deps(turbulence, U))
    UEqn.relax()

    if simple.momentumPredictor():
        ref.solve(UEqn == man.fvc.reconstruct((
            (-ghf * man.fvc.snGrad(rho) - man.fvc.snGrad(p_rgh)) *
            man.surfaceScalarField(mesh.magSf(), man.Deps(mesh)))))

    return UEqn
示例#15
0
def _UEqn(mesh, alpha1, U, p, p_rgh, ghf, rho, rhoPhi, turbulence, g,
          twoPhaseProperties, interface, pimple):

    muEff = man.surfaceScalarField(
        ref.word("muEff"),
        man.surfaceScalarField(twoPhaseProperties.muf(),
                               man.Deps(twoPhaseProperties)) +
        man.fvc.interpolate(rho * man.volScalarField(turbulence.ext_nut(),
                                                     man.Deps(turbulence))))
    UEqn = man.fvm.ddt(rho, U) + man.fvm.div(rhoPhi, U) - man.fvm.laplacian(
        muEff, U) - (man.fvc.grad(U) & man.fvc.grad(muEff))

    UEqn.relax()

    if pimple.momentumPredictor():
        ref.solve( UEqn == \
                     ref.fvc.reconstruct( ( ref.fvc.interpolate( interface.sigmaK() ) * ref.fvc.snGrad( alpha1 ) - ghf * ref.fvc.snGrad( rho ) \
                                                                                                  - ref.fvc.snGrad( p_rgh ) ) * mesh.magSf() ) )
        pass

    return UEqn
示例#16
0
def fun_Ueqn(pimple, mesh, rho, U, phi, turbulence, ghf, p_rgh):
    # Solve the Momentum equation

    UEqn = man.fvm.ddt(rho, U) + man.fvm.div(phi, U) + man.fvVectorMatrix(
        turbulence.divDevRhoReff(U()), man.Deps(turbulence, U))
    UEqn.relax()

    if pimple.momentumPredictor():
        ref.solve(UEqn == man.fvc.reconstruct(
            (-ghf * man.fvc.snGrad(rho) - man.fvc.snGrad(p_rgh)) *
            man.surfaceScalarField(mesh.magSf(), man.Deps(mesh))))

    return UEqn
def createFields(runTime, mesh, g):

    ref.ext_Info() << "Reading thermophysical properties\n" << ref.nl

    pThermo = man.basicPsiThermo.New(mesh)

    rho = man.volScalarField(
        man.IOobject(ref.word("rho"), ref.fileName(runTime.timeName()), mesh,
                     ref.IOobject.NO_READ, ref.IOobject.NO_WRITE),
        man(pThermo.rho(), man.Deps(pThermo)))

    p = man(pThermo.p(), man.Deps(pThermo))
    h = man(pThermo.h(), man.Deps(pThermo))
    psi = man(pThermo.psi(), man.Deps(pThermo))

    ref.ext_Info() << "Reading field U\n" << ref.nl
    U = man.volVectorField(
        man.IOobject(ref.word("U"), ref.fileName(runTime.timeName()), mesh,
                     ref.IOobject.MUST_READ, ref.IOobject.AUTO_WRITE), mesh)

    phi = man.compressibleCreatePhi(runTime, mesh, rho, U)

    ref.ext_Info() << "Creating turbulence model\n" << ref.nl
    turbulence = man.compressible.RASModel.New(rho, U, phi, pThermo)

    ref.ext_Info() << "Calculating field g.h\n" << ref.nl

    gh = man.volScalarField(ref.word("gh"), man(g & mesh.C(), man.Deps(mesh)))
    ghf = man.surfaceScalarField(ref.word("ghf"),
                                 man(g & mesh.Cf(), man.Deps(mesh)))

    ref.ext_Info() << "Reading field p_rgh\n" << ref.nl
    p_rgh = man.volScalarField(
        man.IOobject(ref.word("p_rgh"), ref.fileName(runTime.timeName()), mesh,
                     ref.IOobject.MUST_READ, ref.IOobject.AUTO_WRITE), mesh)
    # Force p_rgh to be consistent with p
    p_rgh << p - rho * gh

    pRefCell = 0
    pRefValue = 0.0

    pRefCell, pRefValue = ref.setRefCell(
        p, p_rgh,
        mesh.solutionDict().subDict(ref.word("SIMPLE")), pRefCell, pRefValue)

    initialMass = ref.fvc.domainIntegrate(rho)
    totalVolume = mesh.V().ext_sum()

    return pThermo, rho, p, h, psi, U, phi, turbulence, gh, ghf, p_rgh, pRefCell, pRefValue, initialMass, totalVolume
示例#18
0
def _createFields( runTime, mesh ):
        
    ref.ext_Info() << "Reading field U\n" << ref.nl
    U = man.volVectorField( man.IOobject( ref.word( "U" ),
                                          ref.fileName( runTime.timeName() ),
                                          mesh,
                                          ref.IOobject.MUST_READ,
                                          ref.IOobject.AUTO_WRITE ),
                            mesh ) 
    
    ref.ext_Info() << "Creating face flux\n" << ref.nl
    phi = man.surfaceScalarField( man.IOobject( ref.word( "phi" ),
                                                ref.fileName( runTime.timeName() ),
                                                mesh,
                                                ref.IOobject.NO_READ,
                                                ref.IOobject.NO_WRITE ),
                                  mesh,
                                  ref.dimensionedScalar( ref.word( "zero" ), mesh.Sf().dimensions()*U.dimensions(), 0.0) )

    
    laminarTransport = man.singlePhaseTransportModel( U, phi )
    
    turbulence = man.incompressible.RASModel.New( U, phi, laminarTransport )
    
    transportProperties = man.IOdictionary( man.IOobject( ref.word( "transportProperties" ),
                                                          ref.fileName( runTime.constant() ),
                                                          mesh,
                                                          ref.IOobject.MUST_READ,
                                                          ref.IOobject.NO_WRITE ) )
    Ubar = ref.dimensionedVector( transportProperties.lookup( ref.word( "Ubar" ) ) )
    
    flowDirection = ( Ubar / Ubar.mag() ).ext_value()
    flowMask = flowDirection.sqr()
    
    gradP = ref.dimensionedVector( ref.word( "gradP" ),
                                   ref.dimensionSet( 0.0, 1.0, -2.0, 0.0, 0.0 ),
                                   ref.vector( 0.0, 0.0, 0.0) )

    
    
              
    return U, phi, laminarTransport, turbulence, Ubar, gradP, flowDirection, flowMask
示例#19
0
def fun_Ueqn(pimple, mesh, rho, U, phi, turbulence, ghf, p_rgh):
    # Solve the Momentum equation

    UEqn = (
        man.fvm.ddt(rho, U)
        + man.fvm.div(phi, U)
        + man.fvVectorMatrix(turbulence.divDevRhoReff(U()), man.Deps(turbulence, U))
    )
    UEqn.relax()

    if pimple.momentumPredictor():
        ref.solve(
            UEqn
            == man.fvc.reconstruct(
                (-ghf * man.fvc.snGrad(rho) - man.fvc.snGrad(p_rgh))
                * man.surfaceScalarField(mesh.magSf(), man.Deps(mesh))
            )
        )

    return UEqn
示例#20
0
def createFields( runTime, mesh ):
    ref.ext_Info()<< "Reading thermophysical properties\n" << ref.nl
    
    pThermo = man.basicPsiThermo.New( mesh )
    
    p = man.volScalarField( pThermo.p(), man.Deps( pThermo ) )
    h = man.volScalarField( pThermo.h(), man.Deps( pThermo ) )
    psi = man.volScalarField( pThermo.psi(), man.Deps( pThermo ) )
    
    rho = man.volScalarField( man.IOobject( ref.word( "rho" ),
                                            ref.fileName( runTime.timeName() ),
                                            mesh,
                                            ref.IOobject.READ_IF_PRESENT,
                                            ref.IOobject.AUTO_WRITE ),
                              man.volScalarField( pThermo.rho(), man.Deps( pThermo ) ) )
    
    ref.ext_Info()<< "Reading field U\n" << ref.nl
    U = man.volVectorField( man.IOobject( ref.word( "U" ),
                                          ref.fileName( runTime.timeName() ),
                                          mesh,
                                          ref.IOobject.MUST_READ,
                                          ref.IOobject.AUTO_WRITE ),
                            mesh )

    phi = man.compressibleCreatePhi( runTime, mesh, U, rho )

    rhoMax = ref.dimensionedScalar( mesh.solutionDict().subDict( ref.word( "PIMPLE" ) ).lookup( ref.word( "rhoMax" ) ) )
    rhoMin = ref.dimensionedScalar( mesh.solutionDict().subDict( ref.word( "PIMPLE" ) ).lookup( ref.word( "rhoMin" ) ) )

    ref.ext_Info()<< "Creating turbulence model\n" << ref.nl
    turbulence = man.compressible.turbulenceModel.New( rho, U, phi, pThermo );
  
    ref.ext_Info()<< "Creating field DpDt\n" << ref.nl;
    DpDt = man.fvc.DDt( man.surfaceScalarField( ref.word( "phiU" ), phi / man.fvc.interpolate( rho ) ), p )
  
    return pThermo, p, h, psi, rho, U, phi, rhoMax, rhoMin, turbulence, DpDt
def createFields( runTime, mesh, g ):
  
  ref.ext_Info() << "Reading thermophysical properties\n" << ref.nl
  
  ref.ext_Info() << "Reading field T\n" << ref.nl
  T = man.volScalarField( man.IOobject( ref.word( "T" ),
                                        ref.fileName( runTime.timeName() ),
                                        mesh,
                                        ref.IOobject.MUST_READ,
                                        ref.IOobject.AUTO_WRITE ), mesh )

  ref.ext_Info() << "Reading field p_rgh\n" << ref.nl
  p_rgh = man.volScalarField( man.IOobject( ref.word( "p_rgh" ),
                                            ref.fileName( runTime.timeName() ),
                                            mesh,
                                            ref.IOobject.MUST_READ,
                                            ref.IOobject.AUTO_WRITE ),
                                mesh )
  
  ref.ext_Info() << "Reading field U\n" << ref.nl
  U = man.volVectorField( man.IOobject( ref.word( "U" ),
                                        ref.fileName( runTime.timeName() ),
                                        mesh,
                                        ref.IOobject.MUST_READ,
                                        ref.IOobject.AUTO_WRITE ), mesh )
  phi = man.createPhi( runTime, mesh, U )
    
  laminarTransport, beta, TRef, Pr, Prt = readTransportProperties( U, phi )
  
  ref.ext_Info()<< "Creating turbulence model\n" << ref.nl
  turbulence = man.incompressible.RASModel.New(U, phi, laminarTransport)

  # Kinematic density for buoyancy force
  rhok = man.volScalarField( man.IOobject( ref.word( "rhok" ),
                                           ref.fileName( runTime.timeName() ),
                                           mesh ), man( 1.0 - beta * ( T() - TRef ), man.Deps( T ) ) )
  
  # kinematic turbulent thermal thermal conductivity m2/s
  ref.ext_Info() << "Reading field kappat\n" << ref.nl
  kappat = man.volScalarField( man.IOobject( ref.word( "kappat" ),
                                             ref.fileName( runTime.timeName() ),
                                             mesh,
                                             ref.IOobject.MUST_READ,
                                             ref.IOobject.AUTO_WRITE ), mesh )

  ref.ext_Info() << "Calculating field g.h\n" << ref.nl
  gh = man.volScalarField( ref.word( "gh" ), man( g & mesh.C(), man.Deps( mesh ) ) )
  
  ghf = man.surfaceScalarField( ref.word( "ghf" ), man( g & mesh.Cf(), man.Deps( mesh ) ) )

  p = man.volScalarField( man.IOobject( ref.word( "p" ),
                                        ref.fileName( runTime.timeName() ),
                                        mesh,
                                        ref.IOobject.NO_READ,
                                        ref.IOobject.AUTO_WRITE ), p_rgh + rhok * gh )

  pRefCell = 0
  pRefValue = 0.0

  pRefCell, pRefValue = ref.setRefCell( p, p_rgh, mesh.solutionDict().subDict( ref.word( "SIMPLE" ) ), pRefCell, pRefValue )

  if p_rgh.needReference():
    p += ref.dimensionedScalar( ref.word( "p" ),p.dimensions(), pRefValue - ref.getRefCellValue( p, pRefCell ) )
    pass
  
  return T, p_rgh, U, phi, laminarTransport, turbulence, rhok, kappat, gh, ghf, p, pRefCell, pRefValue, beta, TRef, Pr, Prt
示例#22
0
def createFluidFields( fluidRegions, runTime ) :
    
    # Initialise fluid field pointer lists
    thermoFluid = list() 
    rhoFluid = list()
    KFluid = list()
    UFluid = list()
    phiFluid = list()
    gFluid = list()
    turbulence =list()
    p_rghFluid = list()
    ghFluid = list()
    ghfFluid = list()
    radiation =list()
    DpDtFluid =list()
    initialMassFluid = list()
    
    #Populate fluid field pointer lists

    for index in range( fluidRegions.__len__() ) :
        ref.ext_Info() << "*** Reading fluid mesh thermophysical properties for region " \
            << fluidRegions[ index ].name() << ref.nl << ref.nl

        ref.ext_Info()<< "    Adding to thermoFluid\n" << ref.nl
        
        thermo = man.basicRhoThermo.New( fluidRegions[ index ] )
        thermoFluid.append( thermo )
        
        ref.ext_Info()<< "    Adding to rhoFluid\n" << ref.nl
        rhoFluid.append( man.volScalarField( man.IOobject( ref.word( "rho" ), 
                                                           ref.fileName( runTime.timeName() ), 
                                                           fluidRegions[ index ], 
                                                           ref.IOobject.NO_READ, 
                                                           ref.IOobject.AUTO_WRITE ),
                                              man.volScalarField( thermoFluid[ index ].rho(), man.Deps( thermoFluid[ index ] ) ) ) )
        
        ref.ext_Info()<< "    Adding to KFluid\n" << ref.nl
        KFluid.append( man.volScalarField( man.IOobject( ref.word( "K" ),
                                                         ref.fileName( runTime.timeName() ),
                                                         fluidRegions[ index ],
                                                         ref.IOobject.NO_READ,
                                                         ref.IOobject.NO_WRITE ),
                                            man.volScalarField( thermoFluid[ index ].Cp() * thermoFluid[ index ].alpha(), 
                                                                man.Deps( thermoFluid[ index ] ) ) ) )
                                                       
        ref.ext_Info()<< "    Adding to UFluid\n" << ref.nl
        UFluid.append( man.volVectorField( man.IOobject( ref.word( "U" ),
                                                         ref.fileName( runTime.timeName() ),
                                                         fluidRegions[ index ],
                                                         ref.IOobject.MUST_READ,
                                                         ref.IOobject.AUTO_WRITE ),
                                           fluidRegions[ index ] ) )
        
        ref.ext_Info()<< "    Adding to phiFluid\n" << ref.nl
        phiFluid.append( man.surfaceScalarField( man.IOobject( ref.word( "phi" ),
                                                               ref.fileName( runTime.timeName() ),
                                                               fluidRegions[ index ],
                                                               ref.IOobject.READ_IF_PRESENT,
                                                               ref.IOobject.AUTO_WRITE),
                                                  man.linearInterpolate( rhoFluid[ index ] * UFluid[ index ] ) & 
                                                  man.surfaceVectorField( fluidRegions[ index ].Sf(), man.Deps( fluidRegions[ index ] ) ) ) )
        
        ref.ext_Info()<< "    Adding to gFluid\n" << ref.nl
        gFluid.append( man.uniformDimensionedVectorField( man.IOobject( ref.word( "g" ),
                                                                        ref.fileName( runTime.constant() ),
                                                                        fluidRegions[ index ],
                                                                        ref.IOobject.MUST_READ,
                                                                        ref.IOobject.NO_WRITE ) ) )        
        
        ref.ext_Info()<< "    Adding to turbulence\n" << ref.nl
        turbulence.append( man.compressible.turbulenceModel.New( rhoFluid[ index ],
                                                                 UFluid[ index ],
                                                                 phiFluid[ index ],
                                                                 thermoFluid[ index ] ) )
        ref.ext_Info() << "    Adding to ghFluid\n" << ref.nl
        ghFluid.append( man.volScalarField( ref.word( "gh" ) , 
                                            gFluid[ index ] & man.volVectorField( fluidRegions[ index ].C(), man.Deps( fluidRegions[ index ] ) ) ) )

        ref.ext_Info() << "    Adding to ghfFluid\n" << ref.nl
        ghfFluid.append( man.surfaceScalarField( ref.word( "ghf" ), 
                                                 gFluid[ index ] & man.surfaceVectorField( fluidRegions[ index ].Cf(), man.Deps( fluidRegions[ index ] ) ) ) )

        p_rghFluid.append( man.volScalarField( man.IOobject( ref.word( "p_rgh" ),
                                                             ref.fileName( runTime.timeName() ),
                                                             fluidRegions[ index ],
                                                             ref.IOobject.MUST_READ,
                                                             ref.IOobject.AUTO_WRITE ),
                                               fluidRegions[ index ] ) )
        # Force p_rgh to be consistent with p
        p_rghFluid[ index ] << thermoFluid[ index ].p()() - rhoFluid[ index ] * ghFluid[ index ]
        
        radiation.append( man.radiation.radiationModel.New( man.volScalarField( thermoFluid[ index ].T(), man.Deps( thermoFluid[ index ] ) ) ) )
        
        initialMassFluid.append( ref.fvc.domainIntegrate( rhoFluid[ index ] ).value()  )
        
        ref.ext_Info()<< "    Adding to DpDtFluid\n" << ref.nl
        DpDtFluid.append( man.volScalarField( ref.word( "DpDt" ), 
                                              man.fvc.DDt( man.surfaceScalarField( ref.word( "phiU" ), 
                                                                                   phiFluid[ index ] / man.fvc.interpolate( rhoFluid[ index ] ) ),
                                                           man.volScalarField( thermoFluid[ index ].p(), man.Deps( thermoFluid[ index ] ) ) ) ) )

    
    return thermoFluid, rhoFluid, KFluid, UFluid, phiFluid, gFluid, turbulence, DpDtFluid, initialMassFluid, ghFluid, ghfFluid, p_rghFluid, radiation
示例#23
0
def createFluidFields(fluidRegions, runTime):

    # Initialise fluid field pointer lists
    thermoFluid = list()
    rhoFluid = list()
    KFluid = list()
    UFluid = list()
    phiFluid = list()
    gFluid = list()
    turbulence = list()
    p_rghFluid = list()
    ghFluid = list()
    ghfFluid = list()
    radiation = list()
    DpDtFluid = list()
    initialMassFluid = list()

    #Populate fluid field pointer lists

    for index in range(fluidRegions.__len__()):
        ref.ext_Info() << "*** Reading fluid mesh thermophysical properties for region " \
            << fluidRegions[ index ].name() << ref.nl << ref.nl

        ref.ext_Info() << "    Adding to thermoFluid\n" << ref.nl

        thermo = man.basicRhoThermo.New(fluidRegions[index])
        thermoFluid.append(thermo)

        ref.ext_Info() << "    Adding to rhoFluid\n" << ref.nl
        rhoFluid.append(
            man.volScalarField(
                man.IOobject(ref.word("rho"), ref.fileName(runTime.timeName()),
                             fluidRegions[index], ref.IOobject.NO_READ,
                             ref.IOobject.AUTO_WRITE),
                man.volScalarField(thermoFluid[index].rho(),
                                   man.Deps(thermoFluid[index]))))

        ref.ext_Info() << "    Adding to KFluid\n" << ref.nl
        KFluid.append(
            man.volScalarField(
                man.IOobject(ref.word("K"), ref.fileName(runTime.timeName()),
                             fluidRegions[index], ref.IOobject.NO_READ,
                             ref.IOobject.NO_WRITE),
                man.volScalarField(
                    thermoFluid[index].Cp() * thermoFluid[index].alpha(),
                    man.Deps(thermoFluid[index]))))

        ref.ext_Info() << "    Adding to UFluid\n" << ref.nl
        UFluid.append(
            man.volVectorField(
                man.IOobject(ref.word("U"), ref.fileName(runTime.timeName()),
                             fluidRegions[index], ref.IOobject.MUST_READ,
                             ref.IOobject.AUTO_WRITE), fluidRegions[index]))

        ref.ext_Info() << "    Adding to phiFluid\n" << ref.nl
        phiFluid.append(
            man.surfaceScalarField(
                man.IOobject(ref.word("phi"), ref.fileName(runTime.timeName()),
                             fluidRegions[index], ref.IOobject.READ_IF_PRESENT,
                             ref.IOobject.AUTO_WRITE),
                man.linearInterpolate(rhoFluid[index] * UFluid[index])
                & man.surfaceVectorField(fluidRegions[index].Sf(),
                                         man.Deps(fluidRegions[index]))))

        ref.ext_Info() << "    Adding to gFluid\n" << ref.nl
        gFluid.append(
            man.uniformDimensionedVectorField(
                man.IOobject(ref.word("g"), ref.fileName(runTime.constant()),
                             fluidRegions[index], ref.IOobject.MUST_READ,
                             ref.IOobject.NO_WRITE)))

        ref.ext_Info() << "    Adding to turbulence\n" << ref.nl
        turbulence.append(
            man.compressible.turbulenceModel.New(rhoFluid[index],
                                                 UFluid[index],
                                                 phiFluid[index],
                                                 thermoFluid[index]))
        ref.ext_Info() << "    Adding to ghFluid\n" << ref.nl
        ghFluid.append(
            man.volScalarField(
                ref.word("gh"), gFluid[index] & man.volVectorField(
                    fluidRegions[index].C(), man.Deps(fluidRegions[index]))))

        ref.ext_Info() << "    Adding to ghfFluid\n" << ref.nl
        ghfFluid.append(
            man.surfaceScalarField(
                ref.word("ghf"), gFluid[index] & man.surfaceVectorField(
                    fluidRegions[index].Cf(), man.Deps(fluidRegions[index]))))

        p_rghFluid.append(
            man.volScalarField(
                man.IOobject(ref.word("p_rgh"),
                             ref.fileName(runTime.timeName()),
                             fluidRegions[index], ref.IOobject.MUST_READ,
                             ref.IOobject.AUTO_WRITE), fluidRegions[index]))
        # Force p_rgh to be consistent with p
        p_rghFluid[index] << thermoFluid[index].p()(
        ) - rhoFluid[index] * ghFluid[index]

        radiation.append(
            man.radiation.radiationModel.New(
                man.volScalarField(thermoFluid[index].T(),
                                   man.Deps(thermoFluid[index]))))

        initialMassFluid.append(
            ref.fvc.domainIntegrate(rhoFluid[index]).value())

        ref.ext_Info() << "    Adding to DpDtFluid\n" << ref.nl
        DpDtFluid.append(
            man.volScalarField(
                ref.word("DpDt"),
                man.fvc.DDt(
                    man.surfaceScalarField(
                        ref.word("phiU"), phiFluid[index] /
                        man.fvc.interpolate(rhoFluid[index])),
                    man.volScalarField(thermoFluid[index].p(),
                                       man.Deps(thermoFluid[index])))))

    return thermoFluid, rhoFluid, KFluid, UFluid, phiFluid, gFluid, turbulence, DpDtFluid, initialMassFluid, ghFluid, ghfFluid, p_rghFluid, radiation
示例#24
0
def _createFields( runTime, mesh ):
    # Load boundary condition
    from BCs import rho
    
    ref.ext_Info() << "Reading thermophysical properties\n" << ref.nl
    thermo = man.basicPsiThermo.New( mesh )
    
    p = man.volScalarField( thermo.p(), man.Deps( thermo ) )
    e = man.volScalarField( thermo.e(), man.Deps( thermo ) ) 
    T = man.volScalarField( thermo.T(), man.Deps( thermo ) )
    psi = man.volScalarField( thermo.psi(), man.Deps( thermo ) )
    mu = man.volScalarField( thermo.mu(), man.Deps( thermo ) )
    
    inviscid = True
    if mu.internalField().max() > 0.0:
       inviscid = False
       pass
    
    ref.ext_Info() << "Reading field U\n" << ref.nl
    U = man.volVectorField( man.IOobject( ref.word( "U" ),
                                          ref.fileName( runTime.timeName() ),
                                          mesh,
                                          ref.IOobject.MUST_READ,
                                          ref.IOobject.AUTO_WRITE ),
                            mesh )
    
    pbf, rhoBoundaryTypes = _rhoBoundaryTypes( p )
    
    rho = man.volScalarField( man.IOobject( ref.word( "rho" ),
                                            ref.fileName( runTime.timeName() ),
                                            mesh,
                                            ref.IOobject.NO_READ,
                                            ref.IOobject.AUTO_WRITE ),
                             man.volScalarField( thermo.rho(), man.Deps( thermo ) ),
                             rhoBoundaryTypes )
    rhoU = man.volVectorField( man.IOobject( ref.word( "rhoU" ),
                                             ref.fileName( runTime.timeName() ),
                                             mesh,
                                             ref.IOobject.NO_READ,
                                             ref.IOobject.NO_WRITE ),
                               rho*U )
    rhoE = man.volScalarField( man.IOobject( ref.word( "rhoE" ),
                                             ref.fileName( runTime.timeName() ),
                                             mesh,
                                             ref.IOobject.NO_READ,
                                             ref.IOobject.NO_WRITE ),
                               rho * ( e + man.volScalarField( 0.5 * U.magSqr(), man.Deps( U ) ) ) )
    
    pos = man.surfaceScalarField( man.IOobject( ref.word( "pos" ),
                                                ref.fileName( runTime.timeName() ),
                                                mesh ),
                                  mesh,
                                  ref.dimensionedScalar( ref.word( "pos" ), ref.dimless, 1.0) )
    
    neg = man.surfaceScalarField( man.IOobject( ref.word( "neg" ),
                                                ref.fileName( runTime.timeName() ),
                                                mesh ),
                                  mesh,
                                  ref.dimensionedScalar( ref.word( "neg" ), ref.dimless, -1.0 ) )

   
    phi = man.surfaceScalarField( ref.word( "phi" ),
                                  man.surfaceVectorField( mesh.Sf(), man.Deps( mesh ) ) & man.fvc.interpolate( rhoU ) )
  
    ref.ext_Info() << "Creating turbulence model\n" << ref.nl
    turbulence = man.compressible.turbulenceModel.New( rho, U, phi, thermo )
    
    return thermo, p, e, T, psi, mu, U, pbf, rhoBoundaryTypes, rho, rhoU, rhoE, pos, neg, inviscid, phi, turbulence
示例#25
0
def _createFields(runTime, mesh, g):

    ref.ext_Info() << "Reading field p_rgh\n" << ref.nl
    p_rgh = man.volScalarField(
        man.IOobject(ref.word("p_rgh"), ref.fileName(runTime.timeName()), mesh,
                     ref.IOobject.MUST_READ, ref.IOobject.AUTO_WRITE), mesh)

    ref.ext_Info() << "Reading field alpha1\n" << ref.nl
    alpha1 = man.volScalarField(
        man.IOobject(ref.word("alpha1"), ref.fileName(runTime.timeName()),
                     mesh, ref.IOobject.MUST_READ, ref.IOobject.AUTO_WRITE),
        mesh)

    ref.ext_Info() << "Calculating field alpha1\n" << ref.nl
    alpha2 = man.volScalarField(ref.word("alpha2"), 1.0 - alpha1)

    ref.ext_Info() << "Reading field U\n" << ref.nl
    U = man.volVectorField(
        man.IOobject(ref.word("U"), ref.fileName(runTime.timeName()), mesh,
                     ref.IOobject.MUST_READ, ref.IOobject.AUTO_WRITE), mesh)

    phi = man.createPhi(runTime, mesh, U)

    ref.ext_Info() << "Reading transportProperties\n" << ref.nl

    twoPhaseProperties = man.twoPhaseMixture(U, phi)

    rho10 = ref.dimensionedScalar(
        twoPhaseProperties.subDict(twoPhaseProperties.phase1Name()).lookup(
            ref.word("rho0")))
    rho20 = ref.dimensionedScalar(
        twoPhaseProperties.subDict(twoPhaseProperties.phase2Name()).lookup(
            ref.word("rho0")))

    psi1 = ref.dimensionedScalar(
        twoPhaseProperties.subDict(twoPhaseProperties.phase1Name()).lookup(
            ref.word("psi")))
    psi2 = ref.dimensionedScalar(
        twoPhaseProperties.subDict(twoPhaseProperties.phase2Name()).lookup(
            ref.word("psi")))

    pMin = ref.dimensionedScalar(twoPhaseProperties.lookup(ref.word("pMin")))

    ref.ext_Info() << "Calculating field g.h\n" << ref.nl
    gh = man.volScalarField(ref.word("gh"),
                            g & man.volVectorField(mesh.C(), man.Deps(mesh)))

    ghf = man.surfaceScalarField(
        ref.word("ghf"), g & man.surfaceVectorField(mesh.Cf(), man.Deps(mesh)))

    p = man.volScalarField(
        man.IOobject(ref.word("p"), ref.fileName(runTime.timeName()), mesh,
                     ref.IOobject.NO_READ, ref.IOobject.AUTO_WRITE),
        ((p_rgh + gh * (alpha1 * rho10 + alpha2 * rho20)) /
         (1.0 - gh * (alpha1 * psi1 + alpha2 * psi2))).ext_max(pMin))  #

    rho1 = rho10 + psi1 * p
    rho2 = rho20 + psi2 * p

    rho = man.volScalarField(
        man.IOobject(ref.word("rho"), ref.fileName(runTime.timeName()), mesh,
                     ref.IOobject.READ_IF_PRESENT, ref.IOobject.AUTO_WRITE),
        alpha1 * rho1 + alpha2 * rho2)

    # Mass flux
    # Initialisation does not matter because rhoPhi is reset after the
    # alpha1 solution before it is used in the U equation.
    rhoPhi = man.surfaceScalarField(
        man.IOobject(ref.word("rho*phi"), ref.fileName(runTime.timeName()),
                     mesh, ref.IOobject.NO_READ, ref.IOobject.NO_WRITE),
        man.fvc.interpolate(rho) * phi)

    dgdt = alpha2.pos() * man.fvc.div(phi) / alpha2.ext_max(0.0001)

    # Construct interface from alpha1 distribution
    interface = man.interfaceProperties(alpha1, U, twoPhaseProperties)

    # Construct incompressible turbulence model
    turbulence = man.incompressible.turbulenceModel.New(
        U, phi, twoPhaseProperties)

    return p_rgh, alpha1, alpha2, U, phi, twoPhaseProperties, rho10, rho20, psi1, psi2, pMin, \
           gh, ghf, p, rho1, rho2, rho, rhoPhi, dgdt, interface, turbulence
示例#26
0
def _createFields( runTime, mesh, g ):
    ref.ext_Info() << "Reading field p_rgh\n" << ref.nl
    p_rgh = man.volScalarField( man.IOobject( ref.word( "p_rgh" ),
                                              ref.fileName( runTime.timeName() ),
                                              mesh,
                                              ref.IOobject.MUST_READ,
                                              ref.IOobject.AUTO_WRITE ),
                                mesh )

    ref.ext_Info() << "Reading field alpha1\n" << ref.nl
    alpha1 = man.volScalarField( man.IOobject( ref.word( "alpha1" ),
                                               ref.fileName( runTime.timeName() ),
                                               mesh,
                                               ref.IOobject.MUST_READ,
                                               ref.IOobject.AUTO_WRITE ),
                                 mesh )

    ref.ext_Info() << "Reading field U\n" << ref.nl
    U = man.volVectorField( man.IOobject( ref.word( "U" ),
                                          ref.fileName( runTime.timeName() ),
                                          mesh,
                                          ref.IOobject.MUST_READ,
                                          ref.IOobject.AUTO_WRITE ),
                            mesh )

    phi = man.createPhi( runTime, mesh, U )

    ref.ext_Info() << "Reading transportProperties\n" << ref.nl
    twoPhaseProperties = man.twoPhaseMixture( U, phi )

    rho1 = twoPhaseProperties.rho1()
    rho2 = twoPhaseProperties.rho2()

    Dab = ref.dimensionedScalar( twoPhaseProperties.lookup( ref.word( "Dab" ) ) )

    # Read the reciprocal of the turbulent Schmidt number
    alphatab = ref.dimensionedScalar( twoPhaseProperties.lookup( ref.word( "alphatab" ) ) )

    # Need to store rho for ddt(rho, U)
    
    rho = man.volScalarField ( ref.word( "rho" ), alpha1 * rho1 + ( ref.scalar(1) - alpha1 ) * rho2 )
    rho.oldTime()

    # Mass flux
    # Initialisation does not matter because rhoPhi is reset after the
    # alpha1 solution before it is used in the U equation.
    rhoPhi = man.surfaceScalarField( man.IOobject( ref.word( "rho*phi" ),
                                                   ref.fileName( runTime.timeName() ),
                                                   mesh,
                                                   ref.IOobject.NO_READ,
                                                   ref.IOobject.NO_WRITE ),
                                     rho1 * phi )

    # Construct incompressible turbulence model
    turbulence = man.incompressible.turbulenceModel.New( U, phi, twoPhaseProperties )

    ref.ext_Info() << "Calculating field g.h\n" << ref.nl
    gh = man.volScalarField ( ref.word( "gh" ), g & man.volVectorField( mesh.C(), man.Deps( mesh ) ) )
    ghf = man.surfaceScalarField ( ref.word( "ghf" ), g & man.surfaceVectorField( mesh.Cf(), man.Deps( mesh ) ) )

    p = man.volScalarField( man.IOobject( ref.word( "p" ),
                                          ref.fileName( runTime.timeName() ),
                                          mesh,
                                          ref.IOobject.NO_READ,
                                          ref.IOobject.AUTO_WRITE ),
                            p_rgh + rho * gh )

    pRefCell = 0
    pRefValue = 0.0
    pRefCell, pRefValue = ref.setRefCell( p, p_rgh, mesh.solutionDict().subDict( ref.word( "PIMPLE" ) ), pRefCell, pRefValue )

    if p_rgh.needReference():
        p += ref.dimensionedScalar( ref.word( "p" ),
                                    p.dimensions(), 
                                    pRefValue - ref.getRefCellValue( p, pRefCell ) )
        p_rgh << p - rho * gh
        pass
     

    return p_rgh, alpha1, U, phi, twoPhaseProperties, rho1, rho2, Dab, alphatab, rho, rhoPhi, turbulence, gh, ghf, p, pRefCell, pRefValue
def fun_UEqn( mesh, pimple, U, phi, turbulence, p, rhok, p_rgh, ghf ):
   
    UEqn = man.fvm.ddt( U ) + man.fvm.div(phi, U) + man( turbulence.divDevReff( U ) , man.Deps( U ) ) 

    UEqn.relax()

    if  pimple.momentumPredictor():
        ref.solve( UEqn == man.fvc.reconstruct( ( - ghf * man.fvc.snGrad( rhok ) - man.fvc.snGrad( p_rgh ) ) * man.surfaceScalarField( mesh.magSf(), mesh ) ) )
        pass
    return UEqn
示例#28
0
def _createFields(runTime, mesh):

    ref.ext_Info() << "Reading field p_rgh\n" << ref.nl
    p_rgh = man.volScalarField(
        man.IOobject(ref.word("p_rgh"), ref.fileName(runTime.timeName()), mesh,
                     ref.IOobject.MUST_READ, ref.IOobject.AUTO_WRITE), mesh)

    ref.ext_Info() << "Reading field alpha1\n" << ref.nl
    man.interfaceProperties  # Load corresponding library to be able to use the following BC - "constantAlphaContactAngleFvPatchScalarField"
    alpha1 = man.volScalarField(
        man.IOobject(ref.word("alpha1"), ref.fileName(runTime.timeName()),
                     mesh, ref.IOobject.MUST_READ, ref.IOobject.AUTO_WRITE),
        mesh)

    ref.ext_Info() << "Reading field U\n" << ref.nl

    U = man.volVectorField(
        man.IOobject(ref.word("U"), ref.fileName(runTime.timeName()), mesh,
                     ref.IOobject.MUST_READ, ref.IOobject.AUTO_WRITE), mesh)

    phi = man.createPhi(runTime, mesh, U)

    ref.ext_Info() << "Reading transportProperties\n" << ref.nl
    twoPhaseProperties = man.twoPhaseMixture(U, phi)

    rho1 = twoPhaseProperties.rho1()
    rho2 = twoPhaseProperties.rho2()

    # Need to store rho for ddt(rho, U)
    rho = man.volScalarField(
        man.IOobject(ref.word("rho"), ref.fileName(runTime.timeName()), mesh,
                     ref.IOobject.READ_IF_PRESENT),
        alpha1 * rho1 + (1.0 - alpha1) * rho2,
        alpha1.ext_boundaryField().types())
    rho.oldTime()

    # Mass flux
    # Initialisation does not matter because rhoPhi is reset after the
    # alpha1 solution before it is used in the U equation.
    rhoPhi = man.surfaceScalarField(
        man.IOobject(ref.word("rho*phi"), ref.fileName(runTime.timeName()),
                     mesh, ref.IOobject.NO_READ, ref.IOobject.NO_WRITE),
        rho1 * phi)

    # Construct interface from alpha1 distribution
    interface = man.interfaceProperties(alpha1, U, twoPhaseProperties)

    # Construct incompressible turbulence model
    turbulence = man.incompressible.turbulenceModel.New(
        U, phi, twoPhaseProperties)

    g = man.readGravitationalAcceleration(runTime, mesh)

    #dimensionedVector g0(g);

    #Read the data file and initialise the interpolation table
    #interpolationTable<vector> timeSeriesAcceleration( runTime.path()/runTime.caseConstant()/"acceleration.dat" );

    ref.ext_Info() << "Calculating field g.h\n" << ref.nl
    gh = man.volScalarField(ref.word("gh"),
                            g & man.volVectorField(mesh.C(), man.Deps(mesh)))
    ghf = man.surfaceScalarField(
        ref.word("ghf"), g & man.surfaceVectorField(mesh.Cf(), man.Deps(mesh)))

    p = man.volScalarField(
        man.IOobject(ref.word("p"), ref.fileName(runTime.timeName()), mesh,
                     ref.IOobject.NO_READ, ref.IOobject.AUTO_WRITE),
        p_rgh + rho * gh)

    pRefCell = 0
    pRefValue = 0.0

    pRefCell, pRefValue = ref.setRefCell(
        p, p_rgh,
        mesh.solutionDict().subDict(ref.word("PIMPLE")), pRefCell, pRefValue)

    if p_rgh.needReference():
        p += ref.dimensionedScalar(
            ref.word("p"), p.dimensions(),
            pRefValue - ref.getRefCellValue(p, pRefCell))
        p_rgh << p - rho * gh
        pass

    return p_rgh, p, alpha1, U, phi, rho1, rho2, rho, rhoPhi, twoPhaseProperties, pRefCell, pRefValue, interface, turbulence, g, gh, ghf
示例#29
0
def _createFields(runTime, mesh):

    ref.ext_Info() << "Reading field p_rgh\n" << ref.nl
    p_rgh = man.volScalarField(
        man.IOobject(
            ref.word("p_rgh"), ref.fileName(runTime.timeName()), mesh, ref.IOobject.MUST_READ, ref.IOobject.AUTO_WRITE
        ),
        mesh,
    )

    ref.ext_Info() << "Reading field alpha1\n" << ref.nl
    alpha1 = man.volScalarField(
        man.IOobject(
            ref.word("alpha1"), ref.fileName(runTime.timeName()), mesh, ref.IOobject.MUST_READ, ref.IOobject.AUTO_WRITE
        ),
        mesh,
    )

    ref.ext_Info() << "Reading field U\n" << ref.nl
    U = man.volVectorField(
        man.IOobject(
            ref.word("U"), ref.fileName(runTime.timeName()), mesh, ref.IOobject.MUST_READ, ref.IOobject.AUTO_WRITE
        ),
        mesh,
    )

    phi = man.createPhi(runTime, mesh, U)

    ref.ext_Info() << "Reading transportProperties\n" << ref.nl
    twoPhaseProperties = man.twoPhaseMixture(U, phi)

    rho1 = twoPhaseProperties.rho1()
    rho2 = twoPhaseProperties.rho2()

    # Need to store rho for ddt(rho, U)
    rho = man.volScalarField(
        man.IOobject(ref.word("rho"), ref.fileName(runTime.timeName()), mesh, ref.IOobject.READ_IF_PRESENT),
        alpha1 * rho1 + (1.0 - alpha1) * rho2,
        alpha1.ext_boundaryField().types(),
    )
    rho.oldTime()

    # Mass flux
    # Initialisation does not matter because rhoPhi is reset after the
    # alpha1 solution before it is used in the U equation.
    rhoPhi = man.surfaceScalarField(
        man.IOobject(
            ref.word("rho*phi"), ref.fileName(runTime.timeName()), mesh, ref.IOobject.NO_READ, ref.IOobject.NO_WRITE
        ),
        rho1 * phi,
    )

    # Construct interface from alpha1 distribution
    interface = man.interfaceProperties(alpha1, U, twoPhaseProperties)

    # Construct incompressible turbulence model
    turbulence = man.incompressible.turbulenceModel.New(U, phi, twoPhaseProperties)

    g = man.readGravitationalAcceleration(runTime, mesh)

    # dimensionedVector g0(g);

    # Read the data file and initialise the interpolation table
    # interpolationTable<vector> timeSeriesAcceleration( runTime.path()/runTime.caseConstant()/"acceleration.dat" );

    ref.ext_Info() << "Calculating field g.h\n" << ref.nl
    gh = man.volScalarField(ref.word("gh"), g & man.volVectorField(mesh.C(), man.Deps(mesh)))
    ghf = man.surfaceScalarField(ref.word("ghf"), g & man.surfaceVectorField(mesh.Cf(), man.Deps(mesh)))

    p = man.volScalarField(
        man.IOobject(
            ref.word("p"), ref.fileName(runTime.timeName()), mesh, ref.IOobject.NO_READ, ref.IOobject.AUTO_WRITE
        ),
        p_rgh + rho * gh,
    )

    pRefCell = 0
    pRefValue = 0.0

    pRefCell, pRefValue = ref.setRefCell(p, p_rgh, mesh.solutionDict().subDict(ref.word("PIMPLE")), pRefCell, pRefValue)

    if p_rgh.needReference():
        p += ref.dimensionedScalar(ref.word("p"), p.dimensions(), pRefValue - ref.getRefCellValue(p, pRefCell))
        p_rgh << p - rho * gh
        pass

    return (
        p_rgh,
        p,
        alpha1,
        U,
        phi,
        rho1,
        rho2,
        rho,
        rhoPhi,
        twoPhaseProperties,
        pRefCell,
        pRefValue,
        interface,
        turbulence,
        g,
        gh,
        ghf,
    )
示例#30
0
def _createFields( runTime, mesh, g ):
        
    ref.ext_Info() << "Reading field p_rgh\n" << ref.nl
    p_rgh = man.volScalarField( man.IOobject( ref.word( "p_rgh" ),
                                              ref.fileName( runTime.timeName() ),
                                              mesh,
                                              ref.IOobject.MUST_READ,
                                              ref.IOobject.AUTO_WRITE ),
                              mesh )

    ref.ext_Info() << "Reading field alpha1\n" << ref.nl
    alpha1 = man.volScalarField( man.IOobject( ref.word( "alpha1" ),
                                               ref.fileName( runTime.timeName() ),
                                               mesh,
                                               ref.IOobject.MUST_READ,
                                               ref.IOobject.AUTO_WRITE ),
                                 mesh )

    ref.ext_Info() << "Calculating field alpha1\n" << ref.nl
    alpha2 = man.volScalarField( ref.word( "alpha2" ), 1.0 - alpha1 )

    ref.ext_Info() << "Reading field U\n" << ref.nl
    U = man.volVectorField( man.IOobject( ref.word( "U" ),
                                          ref.fileName( runTime.timeName() ),
                                          mesh,
                                          ref.IOobject.MUST_READ,
                                          ref.IOobject.AUTO_WRITE ),
                            mesh )

    phi = man.createPhi( runTime, mesh, U )

    ref.ext_Info() << "Reading transportProperties\n" << ref.nl
    
    twoPhaseProperties = man.twoPhaseMixture (U, phi)
    
    rho10 = ref.dimensionedScalar( twoPhaseProperties.subDict( twoPhaseProperties.phase1Name() ).lookup( ref.word( "rho0" ) ) )
    rho20 = ref.dimensionedScalar( twoPhaseProperties.subDict( twoPhaseProperties.phase2Name() ).lookup( ref.word( "rho0" ) ) )
   
    psi1 = ref.dimensionedScalar( twoPhaseProperties.subDict( twoPhaseProperties.phase1Name() ).lookup( ref.word( "psi" ) ) )
    psi2 = ref.dimensionedScalar( twoPhaseProperties.subDict( twoPhaseProperties.phase2Name() ).lookup( ref.word( "psi" ) ) )

    pMin = ref.dimensionedScalar( twoPhaseProperties.lookup( ref.word( "pMin" ) ) )
    
    ref.ext_Info() << "Calculating field g.h\n" << ref.nl
    gh = man.volScalarField( ref.word( "gh" ), g & man.volVectorField( mesh.C(), man.Deps( mesh ) ) )
    
    ghf = man.surfaceScalarField( ref.word( "ghf" ), g & man.surfaceVectorField( mesh.Cf(), man.Deps( mesh ) ) )

    p = man.volScalarField( man.IOobject( ref.word( "p" ),
                                          ref.fileName( runTime.timeName() ),
                                          mesh,
                                          ref.IOobject.NO_READ,
                                          ref.IOobject.AUTO_WRITE ),
                        ( ( p_rgh + gh * ( alpha1 * rho10 + alpha2 * rho20 ) ) / ( 1.0 - gh * ( alpha1 * psi1 + alpha2 * psi2 ) ) ).ext_max( pMin ) ) #

    rho1 = rho10 + psi1 * p
    rho2 = rho20 + psi2 * p

    rho = man.volScalarField( man.IOobject( ref.word( "rho" ),
                                            ref.fileName( runTime.timeName() ),
                                            mesh,
                                            ref.IOobject.READ_IF_PRESENT,
                                            ref.IOobject.AUTO_WRITE ),
                              alpha1 * rho1 + alpha2 * rho2 )

    # Mass flux
    # Initialisation does not matter because rhoPhi is reset after the
    # alpha1 solution before it is used in the U equation.
    rhoPhi = man.surfaceScalarField( man.IOobject( ref.word( "rho*phi" ),
                                                   ref.fileName( runTime.timeName() ),
                                                   mesh,
                                                   ref.IOobject.NO_READ,
                                                   ref.IOobject.NO_WRITE ),
                                     man.fvc.interpolate( rho ) * phi )

    dgdt = alpha2.pos() * man.fvc.div( phi ) / alpha2.ext_max( 0.0001 )

    # Construct interface from alpha1 distribution
    interface = man.interfaceProperties( alpha1, U, twoPhaseProperties )

    # Construct incompressible turbulence model
    turbulence = man.incompressible.turbulenceModel.New( U, phi, twoPhaseProperties )

    return p_rgh, alpha1, alpha2, U, phi, twoPhaseProperties, rho10, rho20, psi1, psi2, pMin, \
           gh, ghf, p, rho1, rho2, rho, rhoPhi, dgdt, interface, turbulence